参考文献/References:
[1] 余玉琴,魏国亮,王永雄.基于改进YOLO v2的无标定3D机械臂自主抓取方法[J].计算机应用研究,2020,37(5):1450-1455.
YU Yuqin, WEI Guoliang, WANG Yongxiong. 3D uncalibrated robotic grasping method based on improved YOLO v2 [J]. Application Research of Computers, 2020, 37(5): 1450-1455.(in Chinese)
[2] 童磊.面向机器人抓取的零件识别与定位方法研究[D].厦门:华侨大学,2018.
TONG Lei. Research on parts identification and positioning for robot crawling [D]. Xiamen: Huaqiao University, 2018.(in Chinese)
[3] 何涛.基于视觉定位的单向器自动装配系统设计与实现[D].杭州:浙江工业大学,2015.
HE Tao. The design and realization of starter driver’s automatic assembly based on visual detection [D]. Hangzhou: Zhejiang University of Technology, 2015.(in Chinese)
[4] YU Kuanting, BAUZA M, FAZELI N, et al. More than a million ways to be pushed: a high-fidelity experimental dataset of planar pushing [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Deajeon, Korea (South): IEEE, 2016: 30-37.
[5] 张森彦,田国会,张营,等.一种先验知识引导的基于二阶段渐进网络的自主抓取策略[J].机器人,2020,42(5):513-524.
ZHANG Senyan, TIAN Guohui, ZHANG Ying, et al. An autonomous grasping strategy based on two-stage progressive network guided by prior knowledge [J]. Robot, 2020, 42(5): 513-524.(in Chinese)
[6] 周祺杰,刘满禄,李新茂,等.基于深度强化学习的固体放射性废物抓取方法研究[J].计算机应用研究,2020,37(11):3363-3367.
ZHOU Qijie, LIU Manlu, LI Xinmao, et al. Research on solid radioactive waste grasping method based on deep reinforcement learning [J]. Application Research of Computers, 2020, 37(11): 3363-3367.(in Chinese)
[7] 薛腾,刘文海,潘震宇,等.基于视觉感知和触觉先验知识学习的机器人稳定抓取[J].机器人,2021,43(1):1-8.
XUE Teng, LIU Wenhai, PAN Zhenyu, et al. Stable robotic grasp based on visual perception and prior tactile knowledge learning [J]. Robot, 2021, 43(1): 1-8.(in Chinese)
[8] 崔少伟,魏俊杭,王睿,等.基于视触融合的机器人抓取滑动检测[J].华中科技大学学报自然科学版,2020,48(1):98-102.
CUI Shaowei, WEI Junhang, WANG Rui. Robotic grasp slip detection based on visual-tactile fusion [J]. Journal of Huazhong University of Science and Technology Natural Science Edition, 2020, 48(1): 98-102.(in Chinese)
[9] 惠文珊,李会军,陈萌,等.基于CNN-LSTM的机器人触觉识别与自适应抓取控制[J].仪器仪表学报,2019,40(1):211-218.
HUI Wenshan, LI Huijun, CHEN Meng, et al. Robotic tactile recognition and adaptive grasping control based on CNN-LSTM [J]. Chinese Journal of Scientific Instrument, 2019, 40(1) : 211-218. (in Chinese)
[10] FALLAHINIA N, MASCARO S A. Comparison of constrained and unconstrained human grasp forces using fingernail imaging and visual servoing [C]// IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 1-7.
[11] 张磊,张华希,方正,等.一种基于自适应蒙特卡罗定位的机器人定位方法:CN104180799A[P]. 2014.
ZHANG Lei, ZHANG Huaxi, FANG Zheng, et al. A robot positioning method based on Adaptive Monte Carlo positioning: CN104180799A [P]. 2014.(in Chinese)
相似文献/References:
[1]黄海明,吴林源,林俊豪,等.基于内嵌型光学弯曲传感器的软体手感知[J].深圳大学学报理工版,2019,36(3):237.[doi:10.3724/SP.J.1249.2019.03229]
HUANG Haiming,WU Linyuan,LIN Junhao,et al.Soft hand perception based on embedded optical fiber bending sensor[J].Journal of Shenzhen University Science and Engineering,2019,36(3):237.[doi:10.3724/SP.J.1249.2019.03229]
[2]夏德龙,吴耀华,王艳艳,等.基于智能机器人的“货到人”系统订单排序优化[J].深圳大学学报理工版,2019,36(6):696.[doi:10.3724/SP.J.1249.2019.06696]
XIA Delong,WU Yaohua,WANG Yanyan,et al.Order sequence optimization for parts-to-picker intelligent robot system[J].Journal of Shenzhen University Science and Engineering,2019,36(3):696.[doi:10.3724/SP.J.1249.2019.06696]