[1]杨永正,潘福全,王召强,等.海底隧道纵坡变化对驾驶人脑电信号影响分析[J].深圳大学学报理工版,2022,39(3):271-277.[doi:10.3724/SP.J.1249.2022.03271]
 YANG Yongzheng,PAN Fuquan,WANG Zhaoqiang,et al.Analysis of the influence of longitudinal slope changes of undersea tunnels on drivers’ EEG signals[J].Journal of Shenzhen University Science and Engineering,2022,39(3):271-277.[doi:10.3724/SP.J.1249.2022.03271]
点击复制

海底隧道纵坡变化对驾驶人脑电信号影响分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第3期
页码:
271-277
栏目:
交通物流
出版日期:
2022-05-16

文章信息/Info

Title:
Analysis of the influence of longitudinal slope changes of undersea tunnels on drivers’ EEG signals
文章编号:
202203005
作者:
杨永正1 潘福全1 王召强2 张丽霞1 杨金顺1
1)青岛理工大学机械与汽车工程学院,山东青岛 266520
2)青岛市市政工程设计研究院,山东青岛 266100
Author(s):
YANG Yongzheng1PAN Fuquan1WANG Zhaoqiang2ZHANG Lixia1and YANG Jinshun1
1) School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, Shandong Province, P.R.China
2) Qingdao Municipal Engineering Design and Research Institute, Qingdao 266100, Shandong Province, P.R.China
关键词:
公路运输海底隧道纵坡驾驶人脑电图脑区行车安全
Keywords:
highway transportation undersea tunnel longitudinal slope driver electroencephalography brain region driving safety
分类号:
U491.3
DOI:
10.3724/SP.J.1249.2022.03271
文献标志码:
A
摘要:
为明确海底隧道纵坡坡度变化对驾驶人脑电信号的影响,通过开展实车实验,运用脑电仪、坡度记录仪及录像机等设备,采集车辆通过海底隧道变坡区时,驾驶人的脑电信号及海底隧道纵坡坡度数据.选取脑电信号功率谱与脑电功率为参量,分析驾驶人经过海底隧道变坡区时脑电信号活跃水平的变化规律;按照不同上下坡对变坡区进行分组,分别建立海底隧道纵坡坡度变化与脑电信号β波功率变化的数学模型.结果表明,驾驶人在经过变坡区时,大脑活跃水平明显提升,额叶区是对纵坡坡度变化最敏感的脑区;纵坡坡度变化与驾驶人脑电信号β波功率变化正相关,纵坡坡度变化越小,脑电信号β波功率变化越小,驾驶人心理压力越小,行车安全性越好.
Abstract:
In order to clarify the impact of changes in the longitudinal slope of undersea tunnel on the driver’s electroencephalography (EEG) signal, real vehicle experiments are carried out, using EEG instrument, gradient recorder, video recorder and other experimental equipments to collect data, such as driver’s EEG and the data on the longitudinal slope of the undersea tunnel. The EEG power spectrum and EEG power are selected as parameters, and the EEG signal change law is analyzed when the driver passes through the undersea tunnel’s slope change area; the slope change areas are grouped according to the difference of the up and down slopes, and the mathematical models of the longitudinal slope change and the change of EEG β wave power have been established respectively. The study results show that the brain activity level of drivers increases significantly when passing through the gradient zone; the frontal area is the brain area which is most sensitive to the changes in longitudinal slope; the longitudinal slope and its change are positively correlated with the change of the driver’s EEG β wave power. The smaller the longitudinal slope, the smaller the EEG β wave power change; the lower the driver’s psychological pressure, the better the driving safety.

参考文献/References:

[1] 曲立清,李翔,代镇洋. 青岛胶州湾海底跨海通道及前海沿线地下道路工程[J]. 隧道建设,2020,40(6):905-924.
QU Liqing, LI Xiang, DAI Zhenyang. Qingdao Jiaozhou Bay undersea cross-sea passage and underground road project along the front sea [J]. Tunnel Construction, 2020, 40(6): 905-924.(in Chinese)
[2] SONG Chaoye, ZHOU Shuming. The overall design of Qingdao Jiaozhou Bay subsea tunnel [J]. Advanced Materials Research, 2012, 368(10): 2971-2976.
[3] 王健. V型海底隧道交通流运行特性及其模型研究[D].青岛:青岛理工大学,2018.
WANG Jian. Study on traffic flow characteristics and its model of V-shaped subsea tunnel [D]. Qingdao: Qingdao University of Technology, 2018.(in Chinese)
[4] ZHOU Hong, ZHAO Yinghui, SHEN Qiang, et al. Risk assessment and management via multi-source information fusion for undersea tunnel construction [J]. Automation in Construction, 2020, 111(3): 103050.
[5] PAN Fuquan, ZHANG Lixia, WANG Jian, et al. Lane-changing risk analysis in undersea tunnels based on fuzzy inference [J]. IEEE Access, 2020, 8(1): 19512-19520.
[6] 冯忠祥,杨苗苗,马昌喜,等. 城市下穿隧道纵坡坡度和速度对驾驶人心率增长率的影响[J]. 中国公路学报,2018,31(4):66-77.
FENG Zhongxiang, YANG Miaomiao, MA Changxi, et al. Influence of longitudinal slope of urban underpass tunnel on driver’s heart rate growth rate [J]. Chinese Journal of Highway and Transport, 2018, 31(4): 66-77.(in Chinese)
[7] 张志刚,胡金平,刘洪洲,等. 水下公路隧道最大纵坡取值研究[J]. 现代隧道技术,2013,50(4):8-14.
ZHANG Zhigang, HU Jinping, LIU Hongzhou, et al. Study on maximum longitudinal slope of underwater highway tunnel [J]. Modern Tunnelling Technology, 2013, 50(4): 8-14.(in Chinese)
[8] 赵建有,何操,郑明明. 高速公路隧道纵坡对驾驶人心率的影响[J]. 长安大学学报自然科学版,2010,30(2):80-83,100.
ZHAO Jianyou, HE Cao, ZHENG Mingming. Influence of longitudinal slope of expressway tunnel on driver’s heart rate [J]. Journal of Chang’an University Natural Science Edition, 2010, 30(2): 80-83, 100.(in Chinese)
[9] 莫秋云,李荣敬,李军,等. 基于ECG指标的山区公路线形对驾驶员特性的影响研究[J]. 中国安全科学学报,2013,23(12):16-20.
MO Qiuyun, LI Rongjing, LI Jun, et al. Research on the influence of mountain highway alignment on driver characteristics based on ECG index [J]. Chinese Safety Science Journal, 2013, 23(12): 16-20. (in Chinese)
[10] 周书明. 青岛胶州湾海底隧道总体设计与施工[J]. 隧道建设,2013,33(1):38-44.
ZHOU Shuming. Overall design and construction of Qingdao Jiaozhou Bay Subsea Tunnel [J]. Tunnel Construction, 2013, 33(1): 38-44.(in Chinese)
[11] YANG Liu, GUAN Wei, MA Rui, et al. Comparison among driving state prediction models for car-following condition based on EEG and driving features [J]. Accident Analysis and Prevention, 2019, 133(10): 105296.
[12] 朱守林,赵谦,戚春华,等. 草原公路交通标志信息量对驾驶员脑电信号的影响分析[J]. 科学技术与工程,2020,20(20):8407-8412.
ZHU Shoulin, ZHAO Qian, QI Chunhua, et al. Analysis of the influence of traffic sign information on driver’s EEG signal on grassland road [J]. Science Technology and Engineering, 2020, 20(20): 8407-8412.(in Chinese)
[13] PAN Fuquan, YANG Yongzheng, ZHANG Lixia, et al. Analysis of EEG characteristics of drivers at the entrance and exit of an undersea tunnel and research on driving safety [J]. International Journal of Safety and Security Engineering, 2021, 11(2): 155-165.
[14] 焦方通,杜志刚,王首硕,等. 城市水下特长隧道弯道驾驶人扫视行为研究[J].中国安全科学学报,2019,29(7):104-109.
JIAO Fangtong, DU Zhigang, WANG Shoushuo, et al. Research on the scanning behavior of drivers on curved road in urban underwater extra-long tunnel [J]. Chinese Safety Science Journal, 2019, 29(7): 104-109.(in Chinese)

相似文献/References:

[1]韩彪,聂伟,王卫平,等.基于公交车站的可达性度量模型[J].深圳大学学报理工版,2013,30(No.1(001-110)):98.[doi:10.3724/SP.J.1249.2013.01098]
 Han Biao,Nie Wei,Wang Weiping,et al.Accessibility measurement model based on bus stop[J].Journal of Shenzhen University Science and Engineering,2013,30(3):98.[doi:10.3724/SP.J.1249.2013.01098]
[2]余春晖,黄虹宾.军用车辆离合器半接合点模糊控制试验研究[J].深圳大学学报理工版,2014,31(6):647.[doi:10.3724/SP.J.1249.2014.06647]
 Yu Chunhui and Huang Hongbin.Fuzzy control for half junction point of AMT clutch used on military vehicles[J].Journal of Shenzhen University Science and Engineering,2014,31(3):647.[doi:10.3724/SP.J.1249.2014.06647]
[3]马捷,李津,程琳.客货分离道路系统的车辆分类标准和评价方法[J].深圳大学学报理工版,2015,32(5):524.[doi:10.3724/SP.J.1249.2015.05524]
 Ma Jie,Li Jin,and Cheng Lin.Vehicle classification and evaluation method of separating trucks from passenger vehicles[J].Journal of Shenzhen University Science and Engineering,2015,32(3):524.[doi:10.3724/SP.J.1249.2015.05524]
[4]万霞,黄文伟,强明明.深圳市乘用车道路行驶工况构建[J].深圳大学学报理工版,2016,33(3):281.[doi:10.3724/SP.J.1249.2016.03281]
 Wan Xia,Huang Wenwei,et al.Construction of driving cycle for passenger vehicles in Shenzhen[J].Journal of Shenzhen University Science and Engineering,2016,33(3):281.[doi:10.3724/SP.J.1249.2016.03281]
[5]王长海,肖亮亮.公路选线中的嵌套山体自动提取技术[J].深圳大学学报理工版,2019,36(5):576.[doi:10.3724/SP.J.1249.2019.05576]
 WANG Changhai and XIAO Liangliang.Automatic extraction of nested mountain in highway route selection[J].Journal of Shenzhen University Science and Engineering,2019,36(3):576.[doi:10.3724/SP.J.1249.2019.05576]
[6]奚宽响,查伟雄,等.旅游城镇路网多目标优化模型及算法设计[J].深圳大学学报理工版,2020,37(2):130.[doi:10.3724/SP.J.1249.2020.02130]
 XI Kuanxiang,ZHA Weixiong,LI Jian,et al.Multi-objective optimization model and algorithm design of road network in tourist town[J].Journal of Shenzhen University Science and Engineering,2020,37(3):130.[doi:10.3724/SP.J.1249.2020.02130]
[7]潘福全,邢英,魏金丽,等.基于开放街区的车辆行驶最优路径设计[J].深圳大学学报理工版,2020,37(2):143.[doi:10.3724/SP.J.1249.2020.02143]
 PAN Fuquan,XING Ying,WEI Jinli,et al.Optimal route design of vehicle driving path based on open blocks[J].Journal of Shenzhen University Science and Engineering,2020,37(3):143.[doi:10.3724/SP.J.1249.2020.02143]
[8]张兵,赖冠华,杜媛媛,等.低灯位多维道路照明技术[J].深圳大学学报理工版,2021,38(6):658.[doi:10.3724/SP.J.1249.2021.06658]
 ZHANG Bing,LAI Guanhua,DU Yuanyuan,et al.Multi-dimentional road lighting technology with fixed low-mounting height luminaires[J].Journal of Shenzhen University Science and Engineering,2021,38(3):658.[doi:10.3724/SP.J.1249.2021.06658]

备注/Memo

备注/Memo:
Received: 2021-02-24; Revised: 2021-09-22; Accepted: 2021-09-25; Online (CNKI): 2022-03-01
Foundation: Natural Science Foundation of Shandong Province (ZR2020MG021); Humanities and Social Sciences Research Planning Foundation of Ministry of Education (18YJAZH067); Key Research and Development Project of Shandong Province (2018GGX105009)
Corresponding author: Professor PAN Fuquan. E-mail: fuquanpan@yeah.net
Citation: YANG Yongzheng, PAN Fuquan, WANG Zhaoqiang, et al.Analysis of the influence of longitudinal slope changes of undersea tunnels on drivers’ EEG signals [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(3): 271-277.(in Chinese)
基金项目:山东省自然科学基金资助项目 (ZR2020MG021);教育部人文社会科学研究规划基金资助项目 (18YJAZH067);山东省重点研发计划资助项目 (2018GGX105009)
作者简介:杨永正(1995—),青岛理工大学硕士研究生.研究方向:交通控制与交通安全.E-mail: yyongzheng@yean.net
潘福全(1976—),青岛理工大学教授.研究方向:公共交通与交通安全.E-mail: fuquanpan@yean.net
杨永正、潘福全为共同第一作者.
引 文:引用格式:杨永正,潘福全,王召强,等.海底隧道纵坡变化对驾驶人脑电信号影响分析[J].深圳大学学报理工版,2022,39(3):271-277.
更新日期/Last Update: 2022-05-30