[1]陈玉,孔纲强,孟永东,等.间歇与持续加热下含承台能量桩基础现场试验[J].深圳大学学报理工版,2022,39(1):75-84.[doi:10.3724/SP.J.1249.2022.01075]
 CHEN Yu,KONG Gangqiang,MENG Yongdong,et al.Field thermal response test of energy pile foundation with cap under intermittent and continuous heating[J].Journal of Shenzhen University Science and Engineering,2022,39(1):75-84.[doi:10.3724/SP.J.1249.2022.01075]
点击复制

间歇与持续加热下含承台能量桩基础现场试验()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第1期
页码:
75-84
栏目:
土木建筑工程
出版日期:
2022-01-12

文章信息/Info

Title:
Field thermal response test of energy pile foundation with cap under intermittent and continuous heating
文章编号:
202201011
作者:
陈玉1 孔纲强12 孟永东1 王乐华1 刘红程1
1)三峡大学三峡库区地质灾害教育部重点实验室,湖北宜昌 443002
2)河海大学岩土力学与堤坝工程教育部重点实验室,江苏南京 210098
Author(s):
CHEN Yu1 KONG Gangqiang12 MENG Yongdong1 WANG Lehua1 and LIU Hongcheng1
1) Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang 443002, Hubei Province, P.R.China
2) Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, Jiangsu Province, P.R.China
关键词:
岩土工程能量桩基础埋深间歇循环加热热力学响应现场试验
Keywords:
geotechnical engineering energy pile buried depth of foundation intermittent cyclic heating thermal mechanical response field test
分类号:
TU443
DOI:
10.3724/SP.J.1249.2022.01075
文献标志码:
A
摘要:
能量桩基础兼具承担上部荷载和浅层地温能利用的双重功能,基础埋深条件和运行模式对能量桩的换热性能及热力响应均有一定影响. 依托中国三峡大学水科学与工程楼桩基础工程,针对3.0 m埋深条件下含承台能量桩基础,开展时长各16 d的两组现场对比试验,每日对应的运行模式分别为16 h加热-8 h自冷的间歇循环加热(IH-16)和持续24 h加热(CH-24),实测能量桩及承台的温度、热致应变等的变化. 结果表明,该试验条件下,CH-24和IH-16试验加热稳定阶段的换热效率值分别约为5.32 kW和5.38 kW,中性点均出现在距桩顶0.78倍桩长处,桩顶位移分别为0.38 mm及0.19 mm,对应的桩身平均温度升幅分别为8.9 ℃和4.7 ℃,热扰动范围约1.7 m;CH-24试验桩身最大约束应力为-3.01 MPa,比IH-16试验的最大约束应力-1.68 MPa提升了79%. IH-16试验在非运行对角桩对应的承台部位产生了约1.75 MPa的附加拉应力,约为C40混凝土抗拉强度值的73.2%. 两组运行模式下承台均出现了细微的差异变形,在设计运行时应予以考虑.
Abstract:
Energy pile foundation has dual functions of bearing capacity and the utilization of shallow geothermal energy, the depth of foundation and operation modes have a certain impact on the heat transfer performance of the energy pile. Relying on the energy pile foundation with cap under the condition of 3.0 m buried depth, which belongs to the Hydraulic and Engineering Building of China Three Gorges University (Yichang city, Hubei province), two series of field thermal response tests are conducted with 16-day test duration, the operation modes are 16 h heating-8 h self-cooling intermittent heating process (IH-16) and continuous 24 h heating process (CH-24), respectively. The temperature, thermal induced strain of energy piles and cap are measured. The heat transfer efficiency values in the stable heating stage under CH-24 and IH-16 heating modes are about 5.32 kW and 5.38 kW, respectively. The neutral points of both CH-24 and IH-16 test conditions are appeared at 0.78 times the length of the pile from pile top, resulting in pile top displacements of 0.38 mm and 0.19 mm, the average temperature rise of the pile body is 8.9 ℃ and 4.7 ℃, respectively; and the thermal disturbance range is about 1.7 m. The maximum constraint stress of pile body under CH-24 test condition is MPa, which is 79% higher than that under IH-16 mode of MPa. The IH-16 test produced an additional tensile stress of about 1.75 MPa at the position of the cap corresponding to the non-operating diagonal pile, which was about 73.2% of the C40 concrete tensile strength value. There were slight deformation differences in the cap under both two operating modes, which should be considered during design and operation.

参考文献/References:

[1] 江强强,焦玉勇,骆 进,等. 能源桩传热与承载特性研究现状及展望[J]. 岩土力学,2019,40(9):3351-3362.
JIANG Qiangqiang, JIAO Yuyong, LUO Jin, et al. Review and prospect on heat transfer and bearing performance of energy piles [J]. Rock and Soil Mechanics, 2019, 40(9): 3351-3362.(in Chinese)
[2] MOORE J N, SIMMONS S F. More power from below [J]. Science, 2013, 6135(340): 933-934.
[3] 余 闯,潘林有,刘松玉,等. 热交换桩的作用机制及其应用[J]. 岩土力学,2009,30(4):933-937,948.
YU Chuang, PAN Linyou, LIU Songyu, et al. Working mechanism and application of heat exchanger piles [J]. Rock and Soil Mechanics, 2009, 30(4): 933-937, 948.(in Chinese)
[4] 刘汉龙,孔纲强,吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报,2014,36(1):176-181.
LIU Hanlong, KONG Gangqiang, WU Hongwei. Applications of energy piles and technical development of PCC energy piles [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176-181.(in Chinese)
[5] 钱七虎. 利用地下空间助力发展绿色建筑与绿色城市[J]. 隧道建设,2019,39(11):1737-1747.
QIAN Qihu. Underground space utilization helps develop green building and green cities [J]. Tunnel Construction, 2019, 39(11): 1737-1747.(in Chinese)
[6] KONG Gangqiang, WU Di, LIU Hanlong, et al. Performance of a geothermal energy deicing system for bridge deck using a pile heat exchanger [J]. International Journal of Energy Research, 2018, 43(1): 596-603.
[7] 党 政,关 文,程晓辉,等. CFG能源桩用于混凝土路面除冰降温的试验研究[J]. 中国公路学报, 2019,32(2):19-30.
DANG Zheng, GUAN Wen, CHENG Xiaohui, et al. Experimental study on CFG energy pile for concrete pavement deicing and cooling [J]. China Journal of Highway and Transport, 2019, 32(2): 19-30.(in Chinese)
[8] JALALUDDINN, MIYARA A. Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode [J]. Applied Thermal Engineering, 2012, 33: 167-174.
[9] CUI P, YANG H, FANG Z. Numerical analysis and experimental validation of heat transfer in ground heat exchangers in alternative operation modes [J]. Energy and Buildings, 2008, 40(6): 1060-1066.
[10] NAM Y, OOKA R, HWANG S. Development of a numerical model to predict heat exchange rates for a ground-source heat pump system [J]. Energy and Buildings, 2008, 40(12): 2133-2140.
[11] FAIZAL M, BOUAZZA A, RAO M S. An experimental investigation of the influence of intermittent and continuous operating modes on the thermal behaviour of a full scale geothermal energy pile [J]. Geomechanics for Energy and the Environment, 2016, 8(2): 80-101.
[12] 任连伟,徐 健,孔纲强,等. 冬季工况多次温度循环下微型钢管桩群桩热力响应特性现场试验[J]. 岩土工程学报,2019,41(11):2053-2060.
REN Lianwei, XU Jian, KONG Gangqiang, et al. Field tests on thermal response characteristics of micro steel pile group under multiple temperature cycles in winter conditions [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2053-2060.(in Chinese)
[13] REN Lianwei, XU Jian, KONG Gangqiang, et al. Field tests on thermal response characteristics of micro-steel-pipe pile under multiple temperature cycles [J]. Renewable Energy, 2020, 147: 1098-1106.
[14] LI Renrong, KONG Gangqiang,CHEN Yonghui,et al. Thermomechanical behaviour of an energy pile-raft foundation under intermittent cooling operation [J]. Geomechanics for Energy and the Environment, 2021: 100240.
[15] 王成龙,刘汉龙,孔纲强,等. 工作荷载下温度循环对桩基变形与应力的影响分析[J]. 岩土力学,2016,37(增刊1):317-322.
WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Influence of circular temperature on the strain and stress of energy piles under a working load [J]. Rock and Soil Mechanics, 2016, 37(Suppl.1): 317-322.(in Chinese)
[16] 孔纲强,王成龙,刘汉龙,等. 多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学,2017,38(4):958-964.
KONG Gangqiang, WANG Chenglong, LIU Hanlong, et al. Analysis of pile head displacement of energy pile under repeated temperature cycling [J]. Rock and Soil Mechanics, 2017, 38(4): 958-964.(in Chinese)
[17] WU H, SHI C, GUNAWAN A, et al. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay [J]. Géotechnique Letters, 2014, 4(4): 310-316.
[18] SANI A K, RAO M S. Response of unsaturated soils to heating of geothermal energy pile [J]. Renewable energy, 2020, 147: 2618-2632.
[19] PARK H, LEE S R, YOON S, et al. Evaluation of thermal response and performance of PHC energy pile: field experiments and numerical simulation [J]. Applied Energy, 2013, 103(3): 12-24.
[20] 陈 玉,孔纲强,孟永东,等. 埋深条件下含承台能量桩基础换热效率及热力响应现场试验[J]. 建筑科学与工程学报,2021,38(5):99-106.
CHEN Yu, KONG Gangqiang, MENG Yongdong, et al. Field test on heat transfer efficiency and thermal mechanical response of energy pile foundation with cap under embedded depth [J]. Journal of Architecture and Civil Engineering, 2021, 38(5): 99-106.(in Chinese)
[21] GB 50010 — 2010 混凝土结构设计规范[S].
GB 50010 — 2010 Code for design of concrete structure [S].(in Chinese)
[22] JGJ/T 438 — 2018 桩基地热能利用技术标准[S].
JGJ/T 438 — 2018 Technical standard for utilization of geothermal energy through piles [S].(in Chinese)
[23] 方金城,孔纲强,孟永东,等. 低承台能量桩基础单桩运行热力耦合特性研究[J]. 岩土工程学报,2020,42(2):317-324.
FANG Jincheng, KONG Gangqiang, MENG Yongdong,et al. Study on thermal-mechanical coupling characteristics of single energy pile operation in pile-cap foundation [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 317-324.(in Chinese)
[24] 孔纲强,吕志祥,孙智文,等. 黏性土地基中摩擦型能量桩现场热响应试验[J]. 中国公路学报,2021,34(3):95-102.
KONG Gangqiang, Lü Zhixiang, SUN Zhiwen, et al. Thermal response testing of friction energy piles embedded in clay [J]. China Journal of Highway and Transport, 2021, 34(3): 95-102.(in Chinese)
[25] FANG Jincheng, KONG Gangqiang, MENG Yongdong, et al. Thermomechanical behavior of energy piles and interactions within energy pile-raft foundations [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 4020079.
[26] CHEN Yonghui, XU Jie, LI Hang, et al. Performance of a prestressed concrete pipe energy pile during heating and cooling [J]. Journal of Performance of Constructed Facilities, 2017, 31(3): 6017001.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]
[11]王晓强,张志超,王烁堯.桩-土界面的非等温不排水剪切行为分析[J].深圳大学学报理工版,2022,39(1):13.[doi:10.3724/SP.J.1249.2022.01013]
 WANG Xiaoqiang,ZHANG Zhichao,and WANG Shuoyao.Analysis of undrained non-isothermal shear behavior of pile-soil interface[J].Journal of Shenzhen University Science and Engineering,2022,39(1):13.[doi:10.3724/SP.J.1249.2022.01013]
[12]杨涛,陈洋,孔纲强.悬浮能量桩-筏基础的热-力学特性数值模拟[J].深圳大学学报理工版,2022,39(1):67.[doi:10.3724/SP.J.1249.2022.01067]
 YANG Tao,CHEN Yang,and KONG Gangqiang.Numerical simulation of thermo-mechanical behavior of floating energy pile-raft foundation[J].Journal of Shenzhen University Science and Engineering,2022,39(1):67.[doi:10.3724/SP.J.1249.2022.01067]

备注/Memo

备注/Memo:
Received:2021-10-12;Accepted:2021-11-30
Foundation:National Natural Science Foundation of China(51922037)
Corresponding author:Professor KONG Gangqiang. E-mail:gqkong1@163.com
Citation:CHEN Yu,KONG Gangqiang,MENG Yongdong, et al.Field thermal response test of energy pile foundation with cap under intermittent and continuous heating [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(1): 75-84.(in Chinese)
基金项目:国家自然科学基金资助项目(51922037)
作者简介:陈 玉(1995—),三峡大学博士研究生.研究方向:能量桩的技术和应用.E-mail:ctgu_chenyu@163.com
引 文:引用格式:陈玉,孔纲强,孟永东,等.间歇与持续加热下含承台能量桩基础现场试验[J].深圳大学学报理工版,2022,39(1):75-84.
更新日期/Last Update: 2022-01-30