[1]杨涛,陈洋,孔纲强.悬浮能量桩-筏基础的热-力学特性数值模拟[J].深圳大学学报理工版,2022,39(1):67-74.[doi:10.3724/SP.J.1249.2022.01067]
 YANG Tao,CHEN Yang,and KONG Gangqiang.Numerical simulation of thermo-mechanical behavior of floating energy pile-raft foundation[J].Journal of Shenzhen University Science and Engineering,2022,39(1):67-74.[doi:10.3724/SP.J.1249.2022.01067]
点击复制

悬浮能量桩-筏基础的热-力学特性数值模拟()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第1期
页码:
67-74
栏目:
土木建筑工程
出版日期:
2022-01-12

文章信息/Info

Title:
Numerical simulation of thermo-mechanical behavior of floating energy pile-raft foundation
文章编号:
202201010
作者:
杨涛1 陈洋2 孔纲强3
1)上海理工大学环境与建筑学院,上海 200093
2)上海交通大学船舶海洋与建筑工程学院,上海 200240
3)河海大学土木交通学院,江苏南京210024
Author(s):
YANG Tao1 CHEN Yang2 and KONG Gangqiang3
1) School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, P.R.China
2) School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R.China
3) College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, Jiangsu Province, P.R.China
关键词:
岩土工程能量桩桩-筏基础群桩效应热-力学特性数值模拟
Keywords:
geotechnical engineering energy pile pile-raft foundation pile group effect thermo-mechanical behavior numerical simulation
分类号:
TU473
DOI:
10.3724/SP.J.1249.2022.01067
文献标志码:
A
摘要:
针对温度荷载与力学荷载共同作用下砂土地基中的悬浮能量桩-筏基础,建立热-力学响应分析的三维非线性有限元数值模型,研究能量群桩效应、桩间土的温度变化以及能量桩数量和布设方式对桩身附加轴向应力和桩头差异沉降的影响. 结果表明,升温荷载作用下,能量群桩内部任意一个桩的桩身附加轴向压应力比单桩作为能量桩时要小得多;在部分能量桩-筏基础中,能量桩的附加压应力沿桩长呈抛物线分布,数值随能量桩数量的增加而减小;非能量桩的附加轴向应力沿桩长呈S形分布,非能量角桩和边桩的上部出现附加拉应力,数值随能量桩数量的增加而增大;能量桩的布设方式对能量桩附加轴向应力有较大影响,但对非能量桩附加轴向应力的影响较小;能量桩非对称布设时桩头间的差异沉降较大,桩周围土的温度取决于其周围能量桩的数量.
Abstract:
The 3D nonlinear finite element model is developed to investigate thermo-mechanical response of a piled raft equipped with floating energy piles on sand subjected to combined thermo-mechanical loadings. Attention is focused on thermally induced group effects, the variations in temperature of the surrounding soil and the effect of the number and the layout of the energy piles on the thermally induced additional axial stress in piles and the differential settlements among the pile heads. The results show that when all the piles are heated, the additional axial compressive stress is much smaller for a pile in the energy pile group than that for single energy pile in the same group. In a pile-raft foundation with partial energy pile, the additional axial compressive stress is distributed in parabolic shape along the energy pile, and it decreases with the increasing number of energy piles. While the additional axial stress in a non-energy pile is distributed in S shape, and the additional axial tensile stresses in the upper parts of non-energy corner piles and edge piles increase with the increase of the number of energy piles. The layout of energy piles has great influence on the additional axial stresses in the energy piles, but has insignificant effect on the additional axial stresses in the non-energy piles. The maximum differential settlement among the pile heads is larger when the layout of energy piles is asymmetrical. The temperature of the surrounding soil depends on the number of energy piles around it.

参考文献/References:

[1] BOURNE-WEBB P J, AMATYA, B, SOGA K, et al. Energy pile test at Lambeth college, London:geotechnical and thermodynamic aspects of pile response to heat cycles [J]. Geotechnique, 2009, 59(3): 237-248.
[2] 路宏伟,蒋 刚,王 昊,等.摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J].岩土工程学报,2017,39(2):334-342.
LU Hongwei, JIANG Gang, WANG Hao, et al. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342.(in Chinese)
[3] 孔纲强,吕志祥,孙智文.等. 黏性土地基中摩擦型能量桩现场热响应试验[J].中国公路学报,2021,34(3):95-102.
KONG Gangqiang, Lü Zhixiang, SUN Zhiwen, et al. Thermal response testing of friction piles embedded in clay [J].China Journal of Highway and Transport, 2021, 34(3): 95-102.(in Chinese)
[4] GOOD J C, MCCARTNEY J S. Centrifuge modeling of end-restraint effects in energy pile foundation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015,141(8): 04015034.
[5] 孔纲强,王成龙,刘汉龙,等.多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学,2017,38(4):1-7.
KONG Gangqiang, WANG Chenglong, LIU Hanlong, et al. Analysis of pile head displacement of energy pile under repeated temperature cycling [J]. Rock and Soil Mechanics, 2015, 38(4): 1-7.(in Chinese)
[6] 陆浩杰,吴 迪,孔纲强,等.循环温度作用下饱和黏土中摩擦型桩变形特性研究[J]. 工程力学,2020,37(5):156-165.
LU Haojie, WU Di, KON Gangqiang, et al. Displacement characteristics of friction piles embedded in saturated clay subjected to thermal cycles [J]. Engineering Mechanics, 2020, 37(5): 156-165.(in Chinese)
[7] DIDONNA A, LALOUI L. Numerical analysis of the geotechnical behaviour of energy piles [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(8): 861-888.
[8] OLGUN C G, OZUDOGRU T Y, SHERIF L A, et al. Long-term performance of heat exchanger piles [J]. Acta Geotechnica, 2015, 10(5): 553-569.
[9] SAGGU R, CHAKRABORTY T. Thermomechanical analysis and parametric study of geothermal energy piles in sand [J].International Journal of Geomechanics, 2017, 17(9): 04017076.
[10] RUI Y, YIN M. Investigations of pile-soil interaction under thermo-mechanical loading [J]. Canadian Geotechnical Journal, 2018, 55(7): 1016-1028.
[11] 杨 涛,刘律智,花永盛. 冷热循环下能量桩热-力学特性的数值模拟[J].防灾减灾工程学报,2019,39(4):585-591.
YANG Tao, LIU Lüzhi, HUA Yongsheng. Numerical simulation of thermo-mechanical behavior of energy pile subjected to cooling-heating cycle [J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 585-591.(in Chinese)
[12] 王言然,孔纲强,沈 扬,等. 热干扰下能量桩热力特性现场试验研究[J]. 清华大学学报自然科学版,2020,60(9):733-739
WANG Yanran, KONG Gangqiang, SHEN Yang, et al. Field tests of the thermal-mechanical characteristics of energy piles during thermal interactions [J]. Journal of Tsinghua University Science and Technology, 2020, 60(9): 733-739.(in Chinese)
[13] MIMOUNI T, LALOUI L. Behaviour of a group of energy piles [J].Canadian Geotechnical Journal, 2015, 52(12): 1913-1929.
[14] ROTTA LORIA A F, LALOUI L. Thermally induced group effects among energy piles [J]. Geotechnique, 2017,67(5): 374-393.
[15] ROTTA LORIA A F, LALOUI L. Group action effects caused by various operating energy piles [J]. Geotechnique, 2018, 68(9): 834-841.
[16] PENG H F, KONG G Q, LIU HL, et al. Thermo-mechanical behaviour of floating energy pile groups in sand [J]. Journal of Zhejiang University Science A, 2018, 19(8): 638-649.
[17] NG C W, FARIVAR A, GOMAAS M M H, et al. Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading [J]. Renewable Energy, 2021, 172: 998-1012.
[18] JEONG S, LIM H, LEE J K, et al. Thermally induced mechanical response of energy piles in axially loaded pile groups [J]. Applied Thermal Engineering, 2014, 71(1): 608-615.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]
[11]王晓强,张志超,王烁堯.桩-土界面的非等温不排水剪切行为分析[J].深圳大学学报理工版,2022,39(1):13.[doi:10.3724/SP.J.1249.2022.01013]
 WANG Xiaoqiang,ZHANG Zhichao,and WANG Shuoyao.Analysis of undrained non-isothermal shear behavior of pile-soil interface[J].Journal of Shenzhen University Science and Engineering,2022,39(1):13.[doi:10.3724/SP.J.1249.2022.01013]
[12]陈玉,孔纲强,孟永东,等.间歇与持续加热下含承台能量桩基础现场试验[J].深圳大学学报理工版,2022,39(1):75.[doi:10.3724/SP.J.1249.2022.01075]
 CHEN Yu,KONG Gangqiang,MENG Yongdong,et al.Field thermal response test of energy pile foundation with cap under intermittent and continuous heating[J].Journal of Shenzhen University Science and Engineering,2022,39(1):75.[doi:10.3724/SP.J.1249.2022.01075]

备注/Memo

备注/Memo:
Received:2021-10-12;Accepted:2021-11-30
Foundation:National Natural Science Foundation of China(51778212)
Corresponding author:Professor YANG Tao.E-mail:shyangtao@163.com
Citation:YANG Tao,CHEN Yang,KONG Gangqiang.Numerical simulation of thermo-mechanical behavior of floating energy pile-raft foundation [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(1): 67-74.(in Chinese)
基金项目:国家自然科学基金资助项目(51778212)
作者简介:杨 涛(1962—),上海理工大学教授.研究方向:复杂地基处理与基础工程. E-mail:shyangtao@163.com
引 文:引用格式:杨 涛,陈 洋,孔纲强.悬浮能量桩-筏基础的热-力学特性数值模拟[J].深圳大学学报理工版,2022,39(1):67-74.
更新日期/Last Update: 2022-01-30