[1]陈智,海迪,张国刚,等.不同种类地埋管换热器换热试验与仿真[J].深圳大学学报理工版,2022,39(1):20-27.[doi:10.3724/SP.J.1249.2022.01020]
 CHEN Zhi,HAI Di,ZHANG Guogang,et al.Experiment and simulation research on heat exchange of different types of underground heat exchangers[J].Journal of Shenzhen University Science and Engineering,2022,39(1):20-27.[doi:10.3724/SP.J.1249.2022.01020]
点击复制

不同种类地埋管换热器换热试验与仿真()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第1期
页码:
20-27
栏目:
土木建筑工程
出版日期:
2022-01-12

文章信息/Info

Title:
Experiment and simulation research on heat exchange of different types of underground heat exchangers
文章编号:
202201004
作者:
陈智1海迪1张国刚2肖衡林1王博1
1)湖北工业大学土木建筑与环境学院,湖北武汉430068
2)中建三局基础设施建设投资有限公司,湖北武汉430064
Author(s):
CHEN Zhi1HAI Di1ZHANG Guogang2XIAO Henglin1and WANG Bo1
1) School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, Hubei Province, P.R.China
2) China Construction Third Engineering Bureau infrastructure construction investment Co. Ltd., Wuhan 430064,Hubei Province, P.R.China
关键词:
岩土工程能源桩传统钻孔埋管换热器换热效果热干扰效应桩基深井
Keywords:
geotechnical engineering energy pile traditional bored and buried pipe heat exchanger heat exchange effect thermal interference effect pile foundation deep well
分类号:
TU473
DOI:
10.3724/SP.J.1249.2022.01020
文献标志码:
A
摘要:
相比传统钻孔埋管换热器地热采集技术,不断优化的能源桩技术在建筑节能工程应用中更具高效及经济优势. 根据深层埋管型能源桩、桩内埋管型能源桩及传统钻孔埋管换热器3种不同地埋管换热器的结构特点,通过现场试验及数值模拟分析3者换热特性. 结果表明,相同埋深下,深层埋管型能源桩单桩换热量及换热效率均高于传统钻孔埋管换热器;相同桩长下,深层埋管型能源桩单桩换热量高于桩内埋管型能源桩;桩基的高导热性可显著提高换热器的换热效果,深层埋管型能源桩的井-桩段换热比达到1.95;深井的设置不仅可以降低桩基热堆积引起的热干扰,还可以弥补换热管间距较小对换热量产生的不利影响. 研究表明,通过优化换热器施工工艺,降低换热管间的热干扰效应,可有效提高换热器整体换热效果.
Abstract:
Compared with traditional bored pipe heat exchanger geothermal collection technology, the continuously optimized energy pile technology is more efficient and economical in the application of building energy-saving projects. According to the structural characteristics of three different underground heat exchangers of deep buried pipe energy pile, inside buried pipe energy pile and traditional bored and buried pipe heat exchanger, we analyze the heat transfer characteristics through field test and numerical simulation. The results show that at the same depth, the heat exchange and heat exchange efficiency of single deep buried pipe energy pile are higher than those of traditional bored buried heat exchanger. Under the same pile length, the heat exchange rate of single deep buried pipe energy pile is higher than that of the inside buried pipe energy pile. The high thermal conductivity of the pile foundation can significantly improve the heat exchange effect of the heat exchanger. The well-pile section heat exchange ratio of the deep buried pipe energy pile reaches 1.95. The installation of the deep well can not only reduce the thermal interference caused by the pile foundation thermal accumulation, but also compensate for the adverse effect of the small heat exchange tube spacing on the heat exchange. By optimizing the construction process of the heat exchanger and reducing the thermal interference effect between the heat exchange tubes, the overall heat exchange effect of the heat exchanger will be effectively improved.

参考文献/References:

[1] 桂树强,程晓辉,张志鹏.地源热泵桩基与钻孔埋管换热器换热性能比较[J].土木建筑与环境工程,2013,35(3):151-156.
GUI Shuqiang, CHENG Xiaohui, ZHANG Zhipeng. Comparison of heat transfer performance between pile foundation of ground source heat pump and bored pipe heat exchanger [J].Civil Construction and Environmental Engineering, 2013, 35(3): 151-156.(in Chinese)
[2] 桂树强,程晓辉.能源桩换热过程中结构响应原位试验研究[J].岩土工程学报,2014,36(6):1087-1094.
GUI Shuqiang, CHENG Xiaohui. In-situ test study on structure response of energy pile during heat transfer [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094.(in Chinese)
[3] 谢金利,覃英宏,李颖鹏,等.能源桩传热特性与热-力响应研究综述[J].土木与环境工程学报,2021,39:1-13.
XIE Jinli, QIN Yinghong, LI Yingpeng, et al.A review of research on heat transfer characteristics and thermal-mechanical response of energy piles [J].Journal of Civil and Environmental Engineering, 2021, 39: 1-13.(in Chinese)
[4] 肖衡林,高华雨,陈智,等.基于后钻深埋管式灌注型能源桩换热系统及其施工方法:CN108444121B[P].2019-11-15.https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN108444121B&DbName=SCPD2019.
XIAO Henglin, GAO Huayu, CHEN Zhi, et al.The heat exchange system and its construction method based on the deep-buried pipe-type perfusion energy pile based on the back-drilling:CN108444121B [P]. 2019-11-15. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN108444121B&DbName=SCPD2019.(in Chinese)
[5] CHEN Zi, YAO Jinwen, PAN Ping, et al.Research on the heat exchange characteristics of the deeply buried pipe type of energy pile [J]. Case Studies in Thermal Engineering, 2021(27): 101268.
[6] 孔纲强,吕志祥,孙智文,等.黏性土地基中摩擦型能量桩现场热响应试验[J].中国公路学报,2021,34(3):95-102.
KONG Gangqiang, Lü Zhixiang, SUN Zhiwen, et al. Field thermal response test of friction energy pile in cohesive soil foundation [J]. Journal of China Highway, 2021, 34(3): 95-102.(in Chinese)
[7] 崔宏志,李宇博,包小华,等.饱和砂土地基相变桩的热力学特性试验研究[J].防灾减灾工程学报,2019,39(4):564-571.
CUI Hongzhi, LI Yubo, BAO Xiaohua, et al.Experimental study on thermodynamic characteristics of phase change pile in saturated sand foundation [J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 564-571.(in Chinese)
[8] 程晓辉,赵乃峰,王浩,等.清华热力学岩土模型与能源地下结构有限元模拟[J].清华大学学报自然科学版,2020,60(9):707-714.
CHENG Xiaohui, ZHAO Naifeng, WANG Hao, et al.Tsinghua thermodynamics geotechnical model and energy underground structure finite element simulation [J]. Journal of Tsinghua University Natural Science, 2020, 60(9): 707-714.(in Chinese)
[9] FLEUR L,WILLIAM P.Temperature response functions (G-functions) for single pile heat exchangers [J]. Energy, 2013: 554-564.
[10] LIU Hanlong, WANG Chenglong, KONG Gangqiang, et al.Model tests on thermo-mechanical behavior of an improved energy pile [J]. European Journal of Environmental and Civil Engineering, 2018, 22: 1257-1272.
[11] 陈忠购,赵石娆,张正威.内置并联U形埋管能量桩的换热性能研究[J].工程力学,2013,30(5):238-243.
CHEN Zhonggou, ZHAO Shirao, ZHANG Zhengwei.Heat transfer analysis of energy piles with parallel connected U-tubes [J]. Engineering Mechanics, 2013, 30(5): 238-243.(in Chinese)
[12] QI He, ZHOU Yu, ZHANG Zhonghua, et al.Heat transfer performance in energy piles in urban areas:case studies for lambeth college and shell centre UK [J]. Applied Sciences, 2020, 10: 5974.
[13] 王言然,孔纲强,沈扬,等.热干扰下能量桩热力特性现场试验研究[J].清华大学学报,2020,60(9):733-739.
WANG Yanran, KONG Gangqiang, SHEN Yang, et al.Field test study on thermal characteristics of energy piles under thermal interference [J]. Journal of Tsinghua University, 2020, 60(9): 733-739.(in Chinese)
[14] GB 50366—2009地源热泵系统工程技术规范[S].
GB 50366—2009 Technical specification for ground source heat pump system engineering [S].(in Chinese)

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]
[11]常虹,朱万里,王琰,等.饱和黏土地基中能源桩热-力学特性试验研究[J].深圳大学学报理工版,2022,39(1):85.[doi:10.3724/SP.J.1249.2022.01085]
 CHANG Hong,ZHU Wanli,WANG Yan,et al.Experimental study on thermal-mechanical properties of energy pile in saturated clay foundation[J].Journal of Shenzhen University Science and Engineering,2022,39(1):85.[doi:10.3724/SP.J.1249.2022.01085]
[12]曹光形,邓岳保,俞磊,等.考虑软土超固结的静钻根植能源桩模型试验[J].深圳大学学报理工版,2022,39(1):93.[doi:10.3724/SP.J.1249.2022.01093]
 CAO Guangxing,DENG Yuebao,YU Lei,et al.Model test of static drilling and rooted energy pile considering over-consolidated behavior of soft soil[J].Journal of Shenzhen University Science and Engineering,2022,39(1):93.[doi:10.3724/SP.J.1249.2022.01093]

备注/Memo

备注/Memo:
Received:2021-10-12;Accepted:2021-11-30
Foundation:National Natural Science Foundation of China(51808203)
Corresponding author:Professor XIAO Henglin.E-mail:xiao-henglin@163.com
Citation:CHEN Zhi,HAI Di,ZHANG Guogang, et al.Experiment and simulation research on heat exchange of different types of underground heat exchangers [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(1): 20-27.(in Chinese)
基金项目:国家自然科学基金资助项目(51808203)
作者简介:陈 智(1988—),湖北工业大学副教授、博士.研究方向:能源岩土工程.E-mail:chenzhi1988420@126.com
引 文:引用格式:陈 智,海 迪,张国刚,等.不同种类地埋管换热器换热试验与仿真[J].深圳大学学报理工版,2022,39(1):20-27.
更新日期/Last Update: 2022-01-30