[1]戴彩丽,等.微纳孔隙油-水-岩石微观界面相互作用研究进展[J].深圳大学学报理工版,2021,38(6):551-562.[doi:10.3724/SP.J.1249.2021.06551]
 DAI Caili,CAO Mengjiao,et al.Research progress on oil-water-rock interface interaction in micro-nano porous medium[J].Journal of Shenzhen University Science and Engineering,2021,38(6):551-562.[doi:10.3724/SP.J.1249.2021.06551]
点击复制

微纳孔隙油-水-岩石微观界面相互作用研究进展()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第6期
页码:
551-562
栏目:
环境与能源
出版日期:
2021-11-15

文章信息/Info

Title:
Research progress on oil-water-rock interface interaction in micro-nano porous medium
文章编号:
202106001
作者:
戴彩丽1 2曹梦娇1 2吴一宁1 2王奉超3金旭4李琳1 2赵明伟1 2
1)中国石油大学(华东)山东省油田化学重点实验室,山东青岛 266580
2)中国石油大学(华东)非常规油气开发教育部重点实验室,山东青岛 266580
3)中国科学技术大学工程科学学院,安徽合肥 230027
4)中国石油勘探开发研究院,北京 100083
Author(s):
DAI Caili1 2 CAO Mengjiao1 2 WU Yining1 2 WANG Fengchao3 JIN Xu4 LI Lin1 2 and ZHAO Mingwei1 2
1) Shandong Key Laboratory of Oilfield Chemistry, China University of Petroleum (East China), Qingdao 266580, Shandong Province, P.R.China
2) Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao 266580, Shandong Province, P.R.China
3) School of Engineering Science, University of Science and Technology of China, Hefei 230027, Anhui Province, P.R.China
4) PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, P.R.China
关键词:
油气田开发工程提高采收率微纳孔隙纳米力学技术分子动力学油膜黏附机理洗油效率界面相互作用
Keywords:
oil and gas well development engineering enhanced oil recovery micro-nano pores nanomechanical technology molecular dynamics oil adhesion mechanism displacement efficiency interface interaction
分类号:
TE357
DOI:
10.3724/SP.J.1249.2021.06551
文献标志码:
A
摘要:
低渗、特低渗储层孔隙小,与岩石壁面直接接触且受壁面束缚的原油占比远高于常规储层,导致大量油膜黏附在岩石壁面难以被剥离,严重制约了低渗及特低渗油藏高效开发.传统的黏附功理论存在局限性,微纳米级孔喉中大量原油受岩石壁面强作用力束缚,油膜-岩石间黏附力成为制约油膜剥离效果的主要因素.介绍了纳米力学技术解析油-水-岩石间微观相互作用方法,如原子力显微镜、分子动力学模拟等,并聚焦油-固界面, 归纳了二者间强相互作用, 油膜与岩石之间除了存在经典Derjaguin-Landau-Verwey Overbeek(DLVO)理论中的范德华力和双电层相互作用外,还存在非DLVO相互作用(疏水作用和离子桥连作用等).总结油膜岩壁黏附机理的研究进展,探讨高效剥离油膜、提高低渗油藏采收率所面临的挑战,并对精确解析油-水-岩石间微观相互作用研究前景进行展望.
Abstract:
Low/ultra-low permeability reservoirs have small pores, and the proportion of crude oil directly contacting with the rock and bound by the rock wall is much higher than that of conventional reservoirs, resulting in a large number of oil films difficult to be stripped. This seriously restricts the efficient development of low/ultra-low permeability reservoirs. The traditional adhesion work theory has limitations. A large number of crude oil in micro-nano pore throats is bound by the strong force of rock wall, and the adhesion force between oil film and rock becomes the main factor restricting the oil film peeling effect. This paper introduces the methods of analyzing oil-water-rock microscopic interaction by nanomechanics, such as atomic force microscope and molecular dynamics simulation. Focusing on oil-solid interface, the strong interaction between them is summarized. Nanomechanical analysis of the microscopic interface interactions among oil-water-rock shows that there are not only typical Derjaguin-Landau-Verwey Overbeek (DLVO) interactions (i.e., van der Waals and electrical double-layer interactions), but also non-DLVO interactions, such as hydrophobic and ion bridging interactions. This review focuses on the oil-rock interface interactions, summarizes recent research progress of the adhesion mechanism and the strong interaction between oil-rocks, discusses the challenges faced by efficient stripping of oil film and improving oil recovery in low permeability reservoirs. Finally, challenges and future prospects of this field are discussed.

参考文献/References:

[1] 沈平平,赵文智,窦立荣.中国石油资源前景与未来10年储量增长趋势预测[J].石油学报,2000, 21(4):1-6.
SHEN Pingping, ZHAO Wenzhi, DOU Lirong. Oil resource prospects and reserve forecast in china in next decade[J]. Acta Petrolei Sinica,2000,21(4):1-6.(in Chinese)
[2] 陈锡荣.中国石化产业发展趋势研究[J].现代化工,2019, 39(6):1-5.
CHEN Xirong. Analysis on development trend of China’s petrochemical industry[J]. Modern Chemical Industry, 2019, 39(6):1-5.(in Chinese)
[3] 郑民,李建忠,吴晓智,等.我国常规与非常规石油资源潜力及未来重点勘探领域[J].海相油气地质,2019,24(2):1-13.
ZHENG Min, LI Jianzhong, WU Xiaozhi, et al. The conventional and unconventional oil resource potential and key exploration fields in China[J]. Marine Origin Petroleum Geology, 2019, 24(2):1-13.(in Chinese)
[4] 吴国干,方辉,韩 征,等.“十二五”中国油气储量增长特点及“十三五”储量增长展望[J].石油学报,2016, 37(9):1145-1151.
WU Guogan, FANG Hui, HAN Zheng, et al. Growth features of measured oil initially in place & gas initially in place during the 12th Five-Year Plan and its outlook for the 13th Five-Year Plan in China[J]. Acta Petrolei Sinica, 2016,37(9):1145-1151.(in Chinese)
[5] 金旭,李国欣,孟思炜,等.陆相页岩油可动用性微观综合评价[J].石油勘探与开发,2021,48(1):222-232..
JIN Xu, LI Guoxin, MENG Siwei, et al. Microscale comprehensive evaluation of continental shale oil recoverability[J]. Petroleum Exploration and Development, 2021,48(1):222-232.(in Chinese)
[6] 常毓文,袁士义,曲德斌.注水开发油田高含水期开发技术经济政策研究[J].石油勘探与开发,2005, 32(3):97-100.
CHANG Yuwen, YUAN Shiyi, QU Debin. Technical and economic limits for the development of high water cut oilfields[J]. Petroleum Exploration and Development, 2005, 32(3):97-100.(in Chinese)
[7] 令永刚,杜寻社,李兆明,等.特低渗透油藏注水开发技术研究[J].江汉石油学院学报,2003, 25(增刊2):137-138.
LING Yonggang, DU Xunshe, LI Zhaoming, et al. Extra-low permeability reservoir water injection production technique[J]. Journal of Jianghan Petroleum Institute, 2003, 25(Suppl.2):137-138.(in Chinese)
[8] 胡文瑞,魏漪,鲍敬伟.中国低渗透油气藏开发理论与技术进展[J].石油勘探与开发,2018, 45(4):646-656.
HU Wenrui, WEI Yi, BAO Jingwei. Development of the theory and technology for low permeability reservoirs in China[J]. Petroleum Exploration and Development, 2018, 45(4):646-656.(in Chinese)
[9] 杨正明,苗盛,刘先贵,等.特低渗透油藏可动流体百分数参数及其应用[J].西安石油大学学报自然科学版,2007, 22(2):96-99.
YANG Zhengming, MIAO Cheng, LIU Xiangui, et al. Percentage parameter of the movable fluid in ultra-low permeability reservoir and its application[J]. Journal of Xi’an Shiyou University Natural Science Edition, 2007, 22(2):96-99.(in Chinese)
[10] 杜金虎,刘合,马德胜,等.试论中国陆相致密油有效开发技术[J].石油勘探与开发,2014, 41(2):198-205.
DU Jinhu, LIU Ge, MA Desheng, et al. Discussion on effective development techniques for continental tight oil in China[J]. Petroleum Exploration and Development, 2014, 41(2):198-205.(in Chinese)
[11] 李松泉,程林松,李秀生,等.特低渗透油藏非线性渗流模型[J].石油勘探与开发,2008, 35(5):606-612.
LI Songquan, CHENG Linsong, LI Xiusheng, et al. Non-linear seepage flow models of ultra-low permeability reservoirs[J]. Petroleum Exploration and Development, 2008,35(5):606-612.(in Chinese)
[12] 王陶,董志刚,钟世成,等.超深超薄砂岩油藏双台阶水平井开发技术[J].钻采工艺,2006, 29(6):62-63.
WANG Tao, DONG Zhigang, ZHONG Shicheng, et al. Development technology of double-step horizontal wells in super-deep and super-thin sandstone reservoir[J]. Drilling & Production Technology, 2006, 29(6):62-63.(in Chinese)
[13] 李阳,曹刚.胜利油田低渗透砂岩油藏开发技术[J].石油勘探与开发,2005(1):123-126.
LI Yang, CAO Gang. Development technology for low-permeability sandstone reservoirs in Shengli Oilfield[J]. Petroleum Exploration and Development, 2005(1):123-126.(in Chinese)
[14] WU Jiazhong, LIU Fanghui, CHEN Gang, et al. Effect of Ionic strength on the interfacial forces between oil/brine/rock interfaces: a chemical force microscopy study[J]. Energy & Fuels, 2016,30(1):273-280.
[15] 王秋语.国外高含水砂岩油田提高水驱采收率技术进展[J].岩性油气藏,2012, 24(3):123-128.
WANG Qiuyu. Technical progress for improving waterflood recovery efficiency of foreign high water cut sandstone oilfield[J]. Northwest Oil & Gas Exploration, 2012, 24(3):123-128.(in Chinese)
[16] 兰玉波,杨清彦,李斌会.聚合物驱波及系数和驱油效率实验研究[J].石油学报,2006, 27(1):64-68.
LAN Yubo, YANG Qingyan, LI Binhui. Experimental research on sweep efficiency and oil-displacement efficiency of polymer flooding[J]. Acta Petrolei Sinica, 2006, 27(1):64-68.(in Chinese)
[17] 姚同玉,李继山,周广厚.影响驱油剂洗油效率的参数分析[J].中国石油大学学报自然科学版,2008, 32(3):99-102.
YAO Tongyu, LI Jishan, ZHOU Guanghou. Analysis of parameters influencing oil displacement efficiency of oil displacement agent[J]. Journal of China University of Petroleum Edition of Natural Science, 2008, 32(3):99-102.(in Chinese)
[18] WANG Yefei, XU Huaimin, YU Weizhao, et al. Surfactant induced reservoir wettability alteration: recent theoretical and experimental advances in enhanced oil recovery[J]. Petroleum Science, 2011, 8(4):463-476.
[19] 张立娟,岳湘安.亲油岩石壁面残余油膜的微观驱替机理[J].油气地质与采收率,2007, 14(1):79-82,85,108.
ZHANG Lijuan, YUE Xiang’an. Microscopic displacement mechanism of oil segment remained on hydrophobic rock wall[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(1):79-82,85,108.(in Chinese)
[20] ISRAELACHVILI J N. Intermolecular and surface forces[M]. Salt Lake City, USA: Academic Press, 2011.
[21] YANG Hui, DUAN Huabo, WU Xu, et al. Self-assembly behavior of ultrahighly charged amphiphilic polyelectrolyte on solid surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(44):11485-11491.
[22] CUI Xin, LIU Jing, XIE Lei,et al. Modulation of hydrophobic interaction by mediating surface nanoscale structure and chemistry, not monotonically by hydrophobicity[J]. Angewandte Chemie, 2018, 57(37): 11903-11908.
[23] SHI Chen, CUI Xin, XIE Lei, et al. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity[J]. ACS Nano, 2015, 9(1):95-104.
[24] XIE Lei, YANG Diling, LU Qiuyi, et al. Role of molecular architecture in the modulation of hydrophobic interactions[J]. Current Opinion in Colloid & Interface Science, 2020, 47: 58-69.
[25] DOSHI D, WATKINS E B, ISRAELACHVILI J N, et al. Reduced water density at hydrophobic surfaces: effect of dissolved gases[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(27):9458-9462.
[26] DONALDSON S J, RYNE A, KRISTIANSEN K, et al. Developing a general interaction potential for hydrophobic and hydrophilic interactions[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2015, 31(7):2051-2064.
[27] DONALDSON S H, LEE C T, CHMELKA B F, et al. General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light-modulated bilayers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38): 15699-15704.
[28] XIE Lei, SHI Chen, CUI Xin, et al. Probing the interaction mechanism between air bubbles and bitumen surfaces in aqueous media using bubble probe atomic force microscopy[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(3):729-738.
[29] BINNIG G, ROHRER H, GERBER C, et al. Surface studies by scanning tunneling microscopy[J]. Physical Review Letters, 1982, 49(1):57-61.
[30] DUCKER W A, SENDEN T J, PASHLEY R M. Direct measurement of colloidal forces using an atomic force microscope[J]. Nature, 1991, 353(6341):239-241.
[31] TIAN Huanhuan, WANG Moran. Molecular dynamics for ion-tuned wettability in oil/brine/rock systems[J]. AIP Advances, 2017, 7(12):125017.
[32] TIAN Huanhuan, LIU Fanli, JIN Xu, et al. Competitive effects of interfacial interactions on ion-tuned wettability by atomic simulations[J]. Journal of Colloid and Interface Science, 2019, 540:495-500.
[33] TIAN Huanhuan, WANG Moran. Electrokinetic mechanism of wettability alternation at oil-water-rock interface[J]. Surface Science Reports, 2017, 72(6): 369-391.
[34] HU Yong, CHU Zhongzhong, DAI Caili, et al. Probing of the hydrated cation bridges in the oil/brine/silica system via atomic force microscopy and molecular dynamics simulation[J]. Fuel, 2021, 342:121666.
[35] BUCKLEY J S, TAKAMURA K, MORROW N R. Influence of electrical surface charges on the wetting properties of crude oils[J]. SPE Reservoir Engineering, 1989,4(3):332-340.
[36] HIRASAKI G J. Wettability: fundamentals and surface forces[J]. SPE Formation Evaluation,1991,6(2):217-226.
[37] HU Yong, CHU Zhongzhong, YAN Hui, et al. Study on the way of destroying hydrated cation bridges by atomic force microscope and molecular dynamics simulation[J]. Journal of Molecular Liquids, 2021,342:117453.
[38] NASRALLA R A, NASR-EL-DIN H A. Double-layer expansion: is it a primary mechanism of improved oil recovery by low-salinity waterflooding?[J]. SPE Reservoir Evaluation and Engineering,2014,17 (1):49-59.
[39] NASRALLA R A, BATAWEEL M A, NASR-EL-DIN H A. Investigation of wettability alteration and oil-recovery improvement by low-salinity water in sandstone rock[J]. Journal of Canadian Petroleum Technology, 2013, 52(2):144-154.
[40] MAHANI H. Kinetics of low-salinity-flooding effect[J]. SPE Journal, 2015,20(1):8-20.
[41] JACKSON M D, AL-MAHROUQI D, VINOGRADOV J. Zeta potential in oil-water carbonate systems and its impact on oil recovery during controlled salinity water-flooding[J]. Scientific Reports, 2016, 6: 37363.
[42] XIE Lei, CUI Xin, GONG Lu, et al. Recent advances in the quantification and modulation of hydrophobic interactions for interfacial applications[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2020, 36(12):2985-3003.
[43] ZHANG Jiawen, XIANG Li, YAN Bin, et al. Nanomechanics of anion-π interaction in aqueous solution[J]. Journal of the American Chemical Society, 2020, 142(4):1710-1714.
[44] YESUFU-RUFAI S, RUCKER M, BERG S, et al. Assessing the wetting state of minerals in complex sandstone rock in-situ by atomic force microscopy[J]. Fuel, 2020, 273:117807.
[45] ZENG Hongbo, ZHAO Boxin, ISRAELACHVILI J N, et al. Liquid-to solid-like failure mechanism of thin polymer films at micro- and nanoscales[J]. Macromolecules, 2010, 43(1):538-542.
[46] ISRAELACHVILI J, PASHLEY R. Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions[J]. Journal of Colloid and Interface Science, 1984, 98:500-514.
[47] ISRAELACHVILI J, PASHLEY R. The hydrophobic interaction is long range, decaying exponentially with distance[J]. Nature,1982, 300(5890):341-342.
[48] PASHLEY R M, MCGUIGGAN P M, NINHAM B W, et al. Attractive forces between uncharged hydrophobic surfaces: direct measurements in aqueous solution[J]. Science, 1985, 229(4718):1088-1089.
[49] CHRISTENSON H K, CLAESSON P M. Cavitation and the interaction between macroscopic hydrophobic surfaces[J]. Science, 1988,239(4838):390-392.
[50] CLEASSON P M, BLOM C E, HERDER P C, et al. Interactions between water—stable hydrophobic Langmuir—Blodgett monolayers on mica[J]. Journal of Colloid and Interface Science, 1986, 114(1): 234-242.
[51] CLAESSON P M, CHRISTENSON H K. Very long range attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water[J]. The Journal of Physical Chemistry, 1988, 92: 1650-1655.
[52] XIE Lei, WANG Jingyi, SHI Chen, et al. Mapping the nanoscale heterogeneity of surface hydrophobicity on the sphalerite mineral[J]. The Journal of Physical Chemistry C, 2017, 121(10): 5620-5628.
[53] MUNZ M, GIUSCA C E, MYERS-WARD R L, et al. Thickness-dependent hydrophobicity of epitaxial grapheme[J]. ACS Nano, 2015, 9(8):8401-8411.
[54] TABOR R F, WU C, GRISER F, et al. Measurement of the hydrophobic force in a soft matter system[J]. The Journal of Physical Chemistry Letters, 2013, 4(22): 3872-3877.
[55] SHI Chen, CHAN D Y C, LIU Qingxia, et al. Probing the hydrophobic interaction between air bubbles and partially hydrophobic surfaces using atomic force microscopy[J]. Journal of Physical Chemistry C, 2014, 118(43):25000-25008.
[56] CUI Xin, SHI Chen, XIE Lei, et al. Probing interactions between air bubble and hydrophobic polymer surface: impact of solution salinity and interfacial nanobubbles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(43):11236-11244.
[57] CHEN Shi, XIN Cui, ZHANG Xurui, et al. Interaction between air bubbles and superhydrophobic surfaces in aqueous solutions[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2015, 31(26):7317-7327.
[58] XIE Lei, WANG Jingyi, YUAN Duowei, et al. Interaction mechanisms between air bubble and molybdenite surface: impact of solution salinity and polymer adsorption[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2017,33(9):2353-2361.
[59] XIE Lei, SHI Chen, CUI Xin, et al. Surface forces and interaction mechanisms of emulsion drops and gas bubbles in complex fluids[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2017, 33(16):3911-3925.
[60] XIE Lei, WANG Jingyi, HUANG Jun, et al. Anisotropic polymer adsorption on molybdenite basal and edge surfaces and interaction mechanism with air bubbles[J]. Frontiers in Chemistry, 2018, 6:361.
[61] LU Qingye, OH D X, LEE Y, et al. Nanomechanics of cation-π interactions in aqueous solution[J]. Angewandte Chemie, 2013, 52(14):3944-3948.
[62] LIU Jing, WANG Jingyi, HUANG Jun, et al. Heterogeneous distribution of adsorbed bitumen on fine solids from solvent: based extraction of oil sands probed by AFM[J]. Energy & Fuels, 2017, 31(9):8833-8842.
[63] LIU Jing, CUI Xin, XIE Lei, et al. Probing effects of molecular-level heterogeneity of surface hydrophobicity on hydrophobic interactions in air/water/solid systems[J]. Journal of Colloid and Interface Science, 2019, 557: 438-449.
[64] BASTOS-GONZALEZ D, PEREZ-FUENTES L, DRUMMOND C, et al. Ions at interfaces: the central role of hydration and hydrophobicity[J]. Current Opinion in Colloid & Interface Science, 2016, 23: 19-28.
[65] AMIRI S, GANDOMKAR A. Influence of electrical surface charges on thermodynamics of wettability during low salinity water flooding on limestone reservoirs[J]. Journal of Molecular Liquids, 2019, 277: 132-141.
[66] MYINT P C, FIROOZABADI A. Thin liquid films in improved oil recovery from low-salinity brine[J]. Current Opinion in Colloid & Interface Science, 2015, 20(2): 105-114.
[67] AUSTAD T. Enhanced oil recovery field case studies[M]. Amsterdam: Elsevier, 2013.
[68] ALIZADEH A H, KHISHVAND M, IOANNIDIS M A, et al. Multi-scale experimental study of carbonated water injection: an effective process for mobilization and recovery of trapped oil[J]. Fuel, 2014, 132: 219-235.
[69] DING H N, METTU S, RAHMAN S. Probing the effects of Ca2+,Mg2+, and SO2-4 on calcite-oil interactions by “soft tip” atomic force microscopy (AFM)[J]. Industrial and Engineering Chemistry Research, 2020, 59(29): 13065-13078.
[70] SHABIB-ASL A, MOHAMMED M M A, KERMANIORVANI M, et al. Effects of low salinity water ion composition on wettability alteration in sandstone reservoir rock: a laboratory investigation[J]. Journal of Natural Sciences Research, 2014, 4(13): 34-41.
[71] AL-SHALABI E W, SEPEHRNOORI K. Low salinity and engineered water injection for sandstone and carbonate reservoirs[M]. Amsterdam: Gulf Professional Publishing, 2017.
[72] REZAEIDOUST A, PUNTERVOLD T, STRAND S, et al. Smart water as wettability modifier in carbonate and sandstone: a discussion of similarities/differences in the chemical mechanisms[J]. Energy & Fuels, 2009, 23(9): 4479-4485.
[73] WASAN D T, NIKOLOV A D. Spreading of nanofluids on solids[J]. Nature, 2003, 423(6936):156-159.
[74] WASAN D T, NIKOLOV A D, KONDIPARTY K. The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure[J]. Current Opinion in Colloid & Interface Science, 2011, 16(4):344-349.
[75] 孙中良,王芙蓉,何生,等.潜江凹陷古近系盐间典型韵律层页岩孔隙结构[J].深圳大学学报理工版,2019,36(3):289-297.
SUN Zhongliang, WANG Furong, HE Sheng, et al. The pore structures of the shale about typical inter-salt rhythm in the Paleogene of Qianjiang depression[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(3):289-297.(in Chinese)
[76] 江昀,许国庆,石阳,等.致密岩心带压渗吸的影响因素实验研究[J].深圳大学学报理工版,2020,37(5):497-506.
JIANG Yun,XU Guoqing,SHI Yang, et al. Experimental study on influencing factors for forced imbibition in tight sandstone cores[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(5):497-506.(in Chinese)
[77] KONDIPARTY K, NIKOLOV A, WU S, et al. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2011, 27(7):3324-3335.
[78] LIU Kl, KONDIPARTY K, NIKOLOV A D, et al. Dynamic spreading of nanofluids on solids part II: modeling[J].Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(47):16274-16284.
[79] NIKOLOV A D, KIRTI K, WASAN D T. Nanoparticle self-structuring in a nanofluid film spreading on a solid surface[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(11):7665-7670.

相似文献/References:

[1]罗建新,张烈辉,赖南君,等.两区线性复合油藏产能典型理论曲线分析[J].深圳大学学报理工版,2011,28(No.5(377-470)):384.
 LUO Jian-xin,ZHANG Lie-hui,LAI Nan-jun,et al.Typical deliverability curve analysis in bi-zonal linear composite reservoirs[J].Journal of Shenzhen University Science and Engineering,2011,28(6):384.
[2]孙杰文,丁云宏,李宜强,等.高浓聚合物黏弹性分析及驱油参数优化[J].深圳大学学报理工版,2012,29(No.1(001-094)):25.[doi:10.3724/SP.J.1249.2012.01025]
 SUN Jie-wen,DING Yun-hong,LI Yi-qiang,et al.Viscoelastic analysis and oil displacement parameter optimization of high-concentration polymer[J].Journal of Shenzhen University Science and Engineering,2012,29(6):25.[doi:10.3724/SP.J.1249.2012.01025]
[3]姚同玉,李继山,黄延章.温度和有效应力对低渗储层孔渗性质的影响[J].深圳大学学报理工版,2012,29(No.2(095-188)):154.[doi:10.3724/SP.J.1249.2012.02154]
 YAO Tong-yu,LI Ji-shan,and HUANG Yan-zhang.Effects of temperature and stress on porosity and permeability of low permeability reservoir[J].Journal of Shenzhen University Science and Engineering,2012,29(6):154.[doi:10.3724/SP.J.1249.2012.02154]
[4]浮历沛,张贵才,葛际江,等.双频复合超声油砂分离技术[J].深圳大学学报理工版,2014,31(4):436.[doi:10.3724/SP.J.1249.2014.04436]
 Fu Lipei,Zhang Guicai,Ge Jijiang,et al.Dual-frequency ultrasound assisted oil-sands separation technology[J].Journal of Shenzhen University Science and Engineering,2014,31(6):436.[doi:10.3724/SP.J.1249.2014.04436]
[5]王传飞,吴光焕,韦涛,等.薄层特超稠油油藏双水平井SAGD开发指标预测模型[J].深圳大学学报理工版,2015,32(5):473.[doi:10.3724/SP.J.1249.2015.05473]
 Wang Chuanfei,Wu Guanghuan,Wei Tao,et al.Predictive models of dual horizontal well SAGD for thin formation and super heavy oil reservoirs[J].Journal of Shenzhen University Science and Engineering,2015,32(6):473.[doi:10.3724/SP.J.1249.2015.05473]
[6]李帅,丁云宏,刘广峰,等.致密储层体积改造润湿反转提高采收率的研究[J].深圳大学学报理工版,2017,34(1):98.[doi:10.3724/SP.J.1249.2017.01098]
 Li Shuai,Ding Yunhong,Liu Guangfeng,et al.Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J].Journal of Shenzhen University Science and Engineering,2017,34(6):98.[doi:10.3724/SP.J.1249.2017.01098]
[7]史雪冬,岳湘安,凌生财,等.特高含水油藏深部调驱体系三维物理模拟[J].深圳大学学报理工版,2018,35(2):179.[doi:10.3724/SP.J.1249.2018.02179]
 SHI Xuedong,YUE Xiangan,LING Shengcai,et al.Physical simulation on system of deep profile control and flooding on high water cut reservoir[J].Journal of Shenzhen University Science and Engineering,2018,35(6):179.[doi:10.3724/SP.J.1249.2018.02179]
[8]苏玉亮,姜妙伦,孟凡坤,等.基于分流理论的低渗透油藏CO2泡沫驱渗流模拟[J].深圳大学学报理工版,2018,35(2):187.[doi:10.3724/SP.J.1249.2018.02187]
 SU Yuliang,JIANG Miaolun,MENG Fankun,et al.Flow modelling of CO2 foam flooding in low permeability reservoirs based on fractional flow function[J].Journal of Shenzhen University Science and Engineering,2018,35(6):187.[doi:10.3724/SP.J.1249.2018.02187]
[9]谷建伟,隋顾磊,李志涛,等.基于ARIMA-Kalman滤波器数据挖掘模型的油井产量预测[J].深圳大学学报理工版,2018,35(6):575.[doi:10.3724/SP.J.1249.2018.06575]
 GU Jianwei,SUI Gulei,LI Zhitao,et al.Oil well production forecasting method based on ARIMA-Kalman filter data mining model[J].Journal of Shenzhen University Science and Engineering,2018,35(6):575.[doi:10.3724/SP.J.1249.2018.06575]
[10]毛新军,胡广文,张晓文,等.双重介质致密油藏油水两相瞬态流动模拟方法[J].深圳大学学报理工版,2021,38(6):572.[doi:10.3724/SP.J.1249.2021.06572]
 MAO Xinjun,HU Guangwen,ZHANG Xiaowen,et al.Simulation method of oil-water two-phase transient flow in dual-porosity system in tight reservoir[J].Journal of Shenzhen University Science and Engineering,2021,38(6):572.[doi:10.3724/SP.J.1249.2021.06572]

备注/Memo

备注/Memo:
Received:2021-07-26;Accepted:2021-08-30;Online(CNKI):2021-10-09
Foundation:National Key R & D Program of China (2019YFA0708700)
Corresponding author:Professor ZHAO Mingwei. E-mail: zhaomingwei@upc.edu.cn
Citation:DAI Caili, CAO Mengjiao, WU Yining, et al. Research progress on oil-water-rock interface interaction in micro-nano porous medium[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(6): 551-562.(in Chinese)
基金项目:国家重点研发计划资助项目(2019YFA0708700)
作者简介:戴彩丽(1971—), 中国石油大学(华东)教授、博士生导师. 研究方向:采油化学、提高采收率理论与技术、非常规能源高效开发. E-mail:daicl306@163.com
引文:戴彩丽,曹梦娇,吴一宁,等. 微纳孔隙油-水-岩石微观界面相互作用研究进展[J]. 深圳大学学报理工版,2021,38(6):551-562.
更新日期/Last Update: 2021-11-30