参考文献/References:
[1] 沈平平,赵文智,窦立荣.中国石油资源前景与未来10年储量增长趋势预测[J].石油学报,2000, 21(4):1-6.
SHEN Pingping, ZHAO Wenzhi, DOU Lirong. Oil resource prospects and reserve forecast in china in next decade[J]. Acta Petrolei Sinica,2000,21(4):1-6.(in Chinese)
[2] 陈锡荣.中国石化产业发展趋势研究[J].现代化工,2019, 39(6):1-5.
CHEN Xirong. Analysis on development trend of China’s petrochemical industry[J]. Modern Chemical Industry, 2019, 39(6):1-5.(in Chinese)
[3] 郑民,李建忠,吴晓智,等.我国常规与非常规石油资源潜力及未来重点勘探领域[J].海相油气地质,2019,24(2):1-13.
ZHENG Min, LI Jianzhong, WU Xiaozhi, et al. The conventional and unconventional oil resource potential and key exploration fields in China[J]. Marine Origin Petroleum Geology, 2019, 24(2):1-13.(in Chinese)
[4] 吴国干,方辉,韩 征,等.“十二五”中国油气储量增长特点及“十三五”储量增长展望[J].石油学报,2016, 37(9):1145-1151.
WU Guogan, FANG Hui, HAN Zheng, et al. Growth features of measured oil initially in place & gas initially in place during the 12th Five-Year Plan and its outlook for the 13th Five-Year Plan in China[J]. Acta Petrolei Sinica, 2016,37(9):1145-1151.(in Chinese)
[5] 金旭,李国欣,孟思炜,等.陆相页岩油可动用性微观综合评价[J].石油勘探与开发,2021,48(1):222-232..
JIN Xu, LI Guoxin, MENG Siwei, et al. Microscale comprehensive evaluation of continental shale oil recoverability[J]. Petroleum Exploration and Development, 2021,48(1):222-232.(in Chinese)
[6] 常毓文,袁士义,曲德斌.注水开发油田高含水期开发技术经济政策研究[J].石油勘探与开发,2005, 32(3):97-100.
CHANG Yuwen, YUAN Shiyi, QU Debin. Technical and economic limits for the development of high water cut oilfields[J]. Petroleum Exploration and Development, 2005, 32(3):97-100.(in Chinese)
[7] 令永刚,杜寻社,李兆明,等.特低渗透油藏注水开发技术研究[J].江汉石油学院学报,2003, 25(增刊2):137-138.
LING Yonggang, DU Xunshe, LI Zhaoming, et al. Extra-low permeability reservoir water injection production technique[J]. Journal of Jianghan Petroleum Institute, 2003, 25(Suppl.2):137-138.(in Chinese)
[8] 胡文瑞,魏漪,鲍敬伟.中国低渗透油气藏开发理论与技术进展[J].石油勘探与开发,2018, 45(4):646-656.
HU Wenrui, WEI Yi, BAO Jingwei. Development of the theory and technology for low permeability reservoirs in China[J]. Petroleum Exploration and Development, 2018, 45(4):646-656.(in Chinese)
[9] 杨正明,苗盛,刘先贵,等.特低渗透油藏可动流体百分数参数及其应用[J].西安石油大学学报自然科学版,2007, 22(2):96-99.
YANG Zhengming, MIAO Cheng, LIU Xiangui, et al. Percentage parameter of the movable fluid in ultra-low permeability reservoir and its application[J]. Journal of Xi’an Shiyou University Natural Science Edition, 2007, 22(2):96-99.(in Chinese)
[10] 杜金虎,刘合,马德胜,等.试论中国陆相致密油有效开发技术[J].石油勘探与开发,2014, 41(2):198-205.
DU Jinhu, LIU Ge, MA Desheng, et al. Discussion on effective development techniques for continental tight oil in China[J]. Petroleum Exploration and Development, 2014, 41(2):198-205.(in Chinese)
[11] 李松泉,程林松,李秀生,等.特低渗透油藏非线性渗流模型[J].石油勘探与开发,2008, 35(5):606-612.
LI Songquan, CHENG Linsong, LI Xiusheng, et al. Non-linear seepage flow models of ultra-low permeability reservoirs[J]. Petroleum Exploration and Development, 2008,35(5):606-612.(in Chinese)
[12] 王陶,董志刚,钟世成,等.超深超薄砂岩油藏双台阶水平井开发技术[J].钻采工艺,2006, 29(6):62-63.
WANG Tao, DONG Zhigang, ZHONG Shicheng, et al. Development technology of double-step horizontal wells in super-deep and super-thin sandstone reservoir[J]. Drilling & Production Technology, 2006, 29(6):62-63.(in Chinese)
[13] 李阳,曹刚.胜利油田低渗透砂岩油藏开发技术[J].石油勘探与开发,2005(1):123-126.
LI Yang, CAO Gang. Development technology for low-permeability sandstone reservoirs in Shengli Oilfield[J]. Petroleum Exploration and Development, 2005(1):123-126.(in Chinese)
[14] WU Jiazhong, LIU Fanghui, CHEN Gang, et al. Effect of Ionic strength on the interfacial forces between oil/brine/rock interfaces: a chemical force microscopy study[J]. Energy & Fuels, 2016,30(1):273-280.
[15] 王秋语.国外高含水砂岩油田提高水驱采收率技术进展[J].岩性油气藏,2012, 24(3):123-128.
WANG Qiuyu. Technical progress for improving waterflood recovery efficiency of foreign high water cut sandstone oilfield[J]. Northwest Oil & Gas Exploration, 2012, 24(3):123-128.(in Chinese)
[16] 兰玉波,杨清彦,李斌会.聚合物驱波及系数和驱油效率实验研究[J].石油学报,2006, 27(1):64-68.
LAN Yubo, YANG Qingyan, LI Binhui. Experimental research on sweep efficiency and oil-displacement efficiency of polymer flooding[J]. Acta Petrolei Sinica, 2006, 27(1):64-68.(in Chinese)
[17] 姚同玉,李继山,周广厚.影响驱油剂洗油效率的参数分析[J].中国石油大学学报自然科学版,2008, 32(3):99-102.
YAO Tongyu, LI Jishan, ZHOU Guanghou. Analysis of parameters influencing oil displacement efficiency of oil displacement agent[J]. Journal of China University of Petroleum Edition of Natural Science, 2008, 32(3):99-102.(in Chinese)
[18] WANG Yefei, XU Huaimin, YU Weizhao, et al. Surfactant induced reservoir wettability alteration: recent theoretical and experimental advances in enhanced oil recovery[J]. Petroleum Science, 2011, 8(4):463-476.
[19] 张立娟,岳湘安.亲油岩石壁面残余油膜的微观驱替机理[J].油气地质与采收率,2007, 14(1):79-82,85,108.
ZHANG Lijuan, YUE Xiang’an. Microscopic displacement mechanism of oil segment remained on hydrophobic rock wall[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(1):79-82,85,108.(in Chinese)
[20] ISRAELACHVILI J N. Intermolecular and surface forces[M]. Salt Lake City, USA: Academic Press, 2011.
[21] YANG Hui, DUAN Huabo, WU Xu, et al. Self-assembly behavior of ultrahighly charged amphiphilic polyelectrolyte on solid surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(44):11485-11491.
[22] CUI Xin, LIU Jing, XIE Lei,et al. Modulation of hydrophobic interaction by mediating surface nanoscale structure and chemistry, not monotonically by hydrophobicity[J]. Angewandte Chemie, 2018, 57(37): 11903-11908.
[23] SHI Chen, CUI Xin, XIE Lei, et al. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity[J]. ACS Nano, 2015, 9(1):95-104.
[24] XIE Lei, YANG Diling, LU Qiuyi, et al. Role of molecular architecture in the modulation of hydrophobic interactions[J]. Current Opinion in Colloid & Interface Science, 2020, 47: 58-69.
[25] DOSHI D, WATKINS E B, ISRAELACHVILI J N, et al. Reduced water density at hydrophobic surfaces: effect of dissolved gases[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(27):9458-9462.
[26] DONALDSON S J, RYNE A, KRISTIANSEN K, et al. Developing a general interaction potential for hydrophobic and hydrophilic interactions[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2015, 31(7):2051-2064.
[27] DONALDSON S H, LEE C T, CHMELKA B F, et al. General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light-modulated bilayers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38): 15699-15704.
[28] XIE Lei, SHI Chen, CUI Xin, et al. Probing the interaction mechanism between air bubbles and bitumen surfaces in aqueous media using bubble probe atomic force microscopy[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(3):729-738.
[29] BINNIG G, ROHRER H, GERBER C, et al. Surface studies by scanning tunneling microscopy[J]. Physical Review Letters, 1982, 49(1):57-61.
[30] DUCKER W A, SENDEN T J, PASHLEY R M. Direct measurement of colloidal forces using an atomic force microscope[J]. Nature, 1991, 353(6341):239-241.
[31] TIAN Huanhuan, WANG Moran. Molecular dynamics for ion-tuned wettability in oil/brine/rock systems[J]. AIP Advances, 2017, 7(12):125017.
[32] TIAN Huanhuan, LIU Fanli, JIN Xu, et al. Competitive effects of interfacial interactions on ion-tuned wettability by atomic simulations[J]. Journal of Colloid and Interface Science, 2019, 540:495-500.
[33] TIAN Huanhuan, WANG Moran. Electrokinetic mechanism of wettability alternation at oil-water-rock interface[J]. Surface Science Reports, 2017, 72(6): 369-391.
[34] HU Yong, CHU Zhongzhong, DAI Caili, et al. Probing of the hydrated cation bridges in the oil/brine/silica system via atomic force microscopy and molecular dynamics simulation[J]. Fuel, 2021, 342:121666.
[35] BUCKLEY J S, TAKAMURA K, MORROW N R. Influence of electrical surface charges on the wetting properties of crude oils[J]. SPE Reservoir Engineering, 1989,4(3):332-340.
[36] HIRASAKI G J. Wettability: fundamentals and surface forces[J]. SPE Formation Evaluation,1991,6(2):217-226.
[37] HU Yong, CHU Zhongzhong, YAN Hui, et al. Study on the way of destroying hydrated cation bridges by atomic force microscope and molecular dynamics simulation[J]. Journal of Molecular Liquids, 2021,342:117453.
[38] NASRALLA R A, NASR-EL-DIN H A. Double-layer expansion: is it a primary mechanism of improved oil recovery by low-salinity waterflooding?[J]. SPE Reservoir Evaluation and Engineering,2014,17 (1):49-59.
[39] NASRALLA R A, BATAWEEL M A, NASR-EL-DIN H A. Investigation of wettability alteration and oil-recovery improvement by low-salinity water in sandstone rock[J]. Journal of Canadian Petroleum Technology, 2013, 52(2):144-154.
[40] MAHANI H. Kinetics of low-salinity-flooding effect[J]. SPE Journal, 2015,20(1):8-20.
[41] JACKSON M D, AL-MAHROUQI D, VINOGRADOV J. Zeta potential in oil-water carbonate systems and its impact on oil recovery during controlled salinity water-flooding[J]. Scientific Reports, 2016, 6: 37363.
[42] XIE Lei, CUI Xin, GONG Lu, et al. Recent advances in the quantification and modulation of hydrophobic interactions for interfacial applications[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2020, 36(12):2985-3003.
[43] ZHANG Jiawen, XIANG Li, YAN Bin, et al. Nanomechanics of anion-π interaction in aqueous solution[J]. Journal of the American Chemical Society, 2020, 142(4):1710-1714.
[44] YESUFU-RUFAI S, RUCKER M, BERG S, et al. Assessing the wetting state of minerals in complex sandstone rock in-situ by atomic force microscopy[J]. Fuel, 2020, 273:117807.
[45] ZENG Hongbo, ZHAO Boxin, ISRAELACHVILI J N, et al. Liquid-to solid-like failure mechanism of thin polymer films at micro- and nanoscales[J]. Macromolecules, 2010, 43(1):538-542.
[46] ISRAELACHVILI J, PASHLEY R. Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions[J]. Journal of Colloid and Interface Science, 1984, 98:500-514.
[47] ISRAELACHVILI J, PASHLEY R. The hydrophobic interaction is long range, decaying exponentially with distance[J]. Nature,1982, 300(5890):341-342.
[48] PASHLEY R M, MCGUIGGAN P M, NINHAM B W, et al. Attractive forces between uncharged hydrophobic surfaces: direct measurements in aqueous solution[J]. Science, 1985, 229(4718):1088-1089.
[49] CHRISTENSON H K, CLAESSON P M. Cavitation and the interaction between macroscopic hydrophobic surfaces[J]. Science, 1988,239(4838):390-392.
[50] CLEASSON P M, BLOM C E, HERDER P C, et al. Interactions between water—stable hydrophobic Langmuir—Blodgett monolayers on mica[J]. Journal of Colloid and Interface Science, 1986, 114(1): 234-242.
[51] CLAESSON P M, CHRISTENSON H K. Very long range attractive forces between uncharged hydrocarbon and fluorocarbon surfaces in water[J]. The Journal of Physical Chemistry, 1988, 92: 1650-1655.
[52] XIE Lei, WANG Jingyi, SHI Chen, et al. Mapping the nanoscale heterogeneity of surface hydrophobicity on the sphalerite mineral[J]. The Journal of Physical Chemistry C, 2017, 121(10): 5620-5628.
[53] MUNZ M, GIUSCA C E, MYERS-WARD R L, et al. Thickness-dependent hydrophobicity of epitaxial grapheme[J]. ACS Nano, 2015, 9(8):8401-8411.
[54] TABOR R F, WU C, GRISER F, et al. Measurement of the hydrophobic force in a soft matter system[J]. The Journal of Physical Chemistry Letters, 2013, 4(22): 3872-3877.
[55] SHI Chen, CHAN D Y C, LIU Qingxia, et al. Probing the hydrophobic interaction between air bubbles and partially hydrophobic surfaces using atomic force microscopy[J]. Journal of Physical Chemistry C, 2014, 118(43):25000-25008.
[56] CUI Xin, SHI Chen, XIE Lei, et al. Probing interactions between air bubble and hydrophobic polymer surface: impact of solution salinity and interfacial nanobubbles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(43):11236-11244.
[57] CHEN Shi, XIN Cui, ZHANG Xurui, et al. Interaction between air bubbles and superhydrophobic surfaces in aqueous solutions[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2015, 31(26):7317-7327.
[58] XIE Lei, WANG Jingyi, YUAN Duowei, et al. Interaction mechanisms between air bubble and molybdenite surface: impact of solution salinity and polymer adsorption[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2017,33(9):2353-2361.
[59] XIE Lei, SHI Chen, CUI Xin, et al. Surface forces and interaction mechanisms of emulsion drops and gas bubbles in complex fluids[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2017, 33(16):3911-3925.
[60] XIE Lei, WANG Jingyi, HUANG Jun, et al. Anisotropic polymer adsorption on molybdenite basal and edge surfaces and interaction mechanism with air bubbles[J]. Frontiers in Chemistry, 2018, 6:361.
[61] LU Qingye, OH D X, LEE Y, et al. Nanomechanics of cation-π interactions in aqueous solution[J]. Angewandte Chemie, 2013, 52(14):3944-3948.
[62] LIU Jing, WANG Jingyi, HUANG Jun, et al. Heterogeneous distribution of adsorbed bitumen on fine solids from solvent: based extraction of oil sands probed by AFM[J]. Energy & Fuels, 2017, 31(9):8833-8842.
[63] LIU Jing, CUI Xin, XIE Lei, et al. Probing effects of molecular-level heterogeneity of surface hydrophobicity on hydrophobic interactions in air/water/solid systems[J]. Journal of Colloid and Interface Science, 2019, 557: 438-449.
[64] BASTOS-GONZALEZ D, PEREZ-FUENTES L, DRUMMOND C, et al. Ions at interfaces: the central role of hydration and hydrophobicity[J]. Current Opinion in Colloid & Interface Science, 2016, 23: 19-28.
[65] AMIRI S, GANDOMKAR A. Influence of electrical surface charges on thermodynamics of wettability during low salinity water flooding on limestone reservoirs[J]. Journal of Molecular Liquids, 2019, 277: 132-141.
[66] MYINT P C, FIROOZABADI A. Thin liquid films in improved oil recovery from low-salinity brine[J]. Current Opinion in Colloid & Interface Science, 2015, 20(2): 105-114.
[67] AUSTAD T. Enhanced oil recovery field case studies[M]. Amsterdam: Elsevier, 2013.
[68] ALIZADEH A H, KHISHVAND M, IOANNIDIS M A, et al. Multi-scale experimental study of carbonated water injection: an effective process for mobilization and recovery of trapped oil[J]. Fuel, 2014, 132: 219-235.
[69] DING H N, METTU S, RAHMAN S. Probing the effects of Ca2+,Mg2+, and SO2-4 on calcite-oil interactions by “soft tip” atomic force microscopy (AFM)[J]. Industrial and Engineering Chemistry Research, 2020, 59(29): 13065-13078.
[70] SHABIB-ASL A, MOHAMMED M M A, KERMANIORVANI M, et al. Effects of low salinity water ion composition on wettability alteration in sandstone reservoir rock: a laboratory investigation[J]. Journal of Natural Sciences Research, 2014, 4(13): 34-41.
[71] AL-SHALABI E W, SEPEHRNOORI K. Low salinity and engineered water injection for sandstone and carbonate reservoirs[M]. Amsterdam: Gulf Professional Publishing, 2017.
[72] REZAEIDOUST A, PUNTERVOLD T, STRAND S, et al. Smart water as wettability modifier in carbonate and sandstone: a discussion of similarities/differences in the chemical mechanisms[J]. Energy & Fuels, 2009, 23(9): 4479-4485.
[73] WASAN D T, NIKOLOV A D. Spreading of nanofluids on solids[J]. Nature, 2003, 423(6936):156-159.
[74] WASAN D T, NIKOLOV A D, KONDIPARTY K. The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure[J]. Current Opinion in Colloid & Interface Science, 2011, 16(4):344-349.
[75] 孙中良,王芙蓉,何生,等.潜江凹陷古近系盐间典型韵律层页岩孔隙结构[J].深圳大学学报理工版,2019,36(3):289-297.
SUN Zhongliang, WANG Furong, HE Sheng, et al. The pore structures of the shale about typical inter-salt rhythm in the Paleogene of Qianjiang depression[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(3):289-297.(in Chinese)
[76] 江昀,许国庆,石阳,等.致密岩心带压渗吸的影响因素实验研究[J].深圳大学学报理工版,2020,37(5):497-506.
JIANG Yun,XU Guoqing,SHI Yang, et al. Experimental study on influencing factors for forced imbibition in tight sandstone cores[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(5):497-506.(in Chinese)
[77] KONDIPARTY K, NIKOLOV A, WU S, et al. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2011, 27(7):3324-3335.
[78] LIU Kl, KONDIPARTY K, NIKOLOV A D, et al. Dynamic spreading of nanofluids on solids part II: modeling[J].Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(47):16274-16284.
[79] NIKOLOV A D, KIRTI K, WASAN D T. Nanoparticle self-structuring in a nanofluid film spreading on a solid surface[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(11):7665-7670.
相似文献/References:
[1]罗建新,张烈辉,赖南君,等.两区线性复合油藏产能典型理论曲线分析[J].深圳大学学报理工版,2011,28(No.5(377-470)):384.
LUO Jian-xin,ZHANG Lie-hui,LAI Nan-jun,et al.Typical deliverability curve analysis in bi-zonal linear composite reservoirs[J].Journal of Shenzhen University Science and Engineering,2011,28(6):384.
[2]孙杰文,丁云宏,李宜强,等.高浓聚合物黏弹性分析及驱油参数优化[J].深圳大学学报理工版,2012,29(No.1(001-094)):25.[doi:10.3724/SP.J.1249.2012.01025]
SUN Jie-wen,DING Yun-hong,LI Yi-qiang,et al.Viscoelastic analysis and oil displacement parameter optimization of high-concentration polymer[J].Journal of Shenzhen University Science and Engineering,2012,29(6):25.[doi:10.3724/SP.J.1249.2012.01025]
[3]姚同玉,李继山,黄延章.温度和有效应力对低渗储层孔渗性质的影响[J].深圳大学学报理工版,2012,29(No.2(095-188)):154.[doi:10.3724/SP.J.1249.2012.02154]
YAO Tong-yu,LI Ji-shan,and HUANG Yan-zhang.Effects of temperature and stress on porosity and permeability of low permeability reservoir[J].Journal of Shenzhen University Science and Engineering,2012,29(6):154.[doi:10.3724/SP.J.1249.2012.02154]
[4]浮历沛,张贵才,葛际江,等.双频复合超声油砂分离技术[J].深圳大学学报理工版,2014,31(4):436.[doi:10.3724/SP.J.1249.2014.04436]
Fu Lipei,Zhang Guicai,Ge Jijiang,et al.Dual-frequency ultrasound assisted oil-sands separation technology[J].Journal of Shenzhen University Science and Engineering,2014,31(6):436.[doi:10.3724/SP.J.1249.2014.04436]
[5]王传飞,吴光焕,韦涛,等.薄层特超稠油油藏双水平井SAGD开发指标预测模型[J].深圳大学学报理工版,2015,32(5):473.[doi:10.3724/SP.J.1249.2015.05473]
Wang Chuanfei,Wu Guanghuan,Wei Tao,et al.Predictive models of dual horizontal well SAGD for thin formation and super heavy oil reservoirs[J].Journal of Shenzhen University Science and Engineering,2015,32(6):473.[doi:10.3724/SP.J.1249.2015.05473]
[6]李帅,丁云宏,刘广峰,等.致密储层体积改造润湿反转提高采收率的研究[J].深圳大学学报理工版,2017,34(1):98.[doi:10.3724/SP.J.1249.2017.01098]
Li Shuai,Ding Yunhong,Liu Guangfeng,et al.Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J].Journal of Shenzhen University Science and Engineering,2017,34(6):98.[doi:10.3724/SP.J.1249.2017.01098]
[7]史雪冬,岳湘安,凌生财,等.特高含水油藏深部调驱体系三维物理模拟[J].深圳大学学报理工版,2018,35(2):179.[doi:10.3724/SP.J.1249.2018.02179]
SHI Xuedong,YUE Xiangan,LING Shengcai,et al.Physical simulation on system of deep profile control and flooding on high water cut reservoir[J].Journal of Shenzhen University Science and Engineering,2018,35(6):179.[doi:10.3724/SP.J.1249.2018.02179]
[8]苏玉亮,姜妙伦,孟凡坤,等.基于分流理论的低渗透油藏CO2泡沫驱渗流模拟[J].深圳大学学报理工版,2018,35(2):187.[doi:10.3724/SP.J.1249.2018.02187]
SU Yuliang,JIANG Miaolun,MENG Fankun,et al.Flow modelling of CO2 foam flooding in low permeability reservoirs based on fractional flow function[J].Journal of Shenzhen University Science and Engineering,2018,35(6):187.[doi:10.3724/SP.J.1249.2018.02187]
[9]谷建伟,隋顾磊,李志涛,等.基于ARIMA-Kalman滤波器数据挖掘模型的油井产量预测[J].深圳大学学报理工版,2018,35(6):575.[doi:10.3724/SP.J.1249.2018.06575]
GU Jianwei,SUI Gulei,LI Zhitao,et al.Oil well production forecasting method based on ARIMA-Kalman filter data mining model[J].Journal of Shenzhen University Science and Engineering,2018,35(6):575.[doi:10.3724/SP.J.1249.2018.06575]
[10]毛新军,胡广文,张晓文,等.双重介质致密油藏油水两相瞬态流动模拟方法[J].深圳大学学报理工版,2021,38(6):572.[doi:10.3724/SP.J.1249.2021.06572]
MAO Xinjun,HU Guangwen,ZHANG Xiaowen,et al.Simulation method of oil-water two-phase transient flow in dual-porosity system in tight reservoir[J].Journal of Shenzhen University Science and Engineering,2021,38(6):572.[doi:10.3724/SP.J.1249.2021.06572]