[1]黄艳,蔡景,代定强.基于Modelica的RAT作动机构仿真及设计参数优化[J].深圳大学学报理工版,2021,38(4):419-426.[doi:10.3724/SP.J.1249.2021.04419]
 HUANG Yan,CAI Jing,and DAI Dingqiang.Modelica-based simulation and optimization of design parameters of RAT actuator[J].Journal of Shenzhen University Science and Engineering,2021,38(4):419-426.[doi:10.3724/SP.J.1249.2021.04419]
点击复制

基于Modelica的RAT作动机构仿真及设计参数优化()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第4期
页码:
419-426
栏目:
电子与信息科学
出版日期:
2021-07-07

文章信息/Info

Title:
Modelica-based simulation and optimization of design parameters of RAT actuator
文章编号:
202104012
作者:
黄艳蔡景代定强
南京航空航天大学民航学院,江苏南京 211106
Author(s):
HUANG Yan CAI Jing and DAI Dingqiang
College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu Province, P.R.China
关键词:
民用飞机冲压空气涡轮Modelica作动机构建模仿真设计参数优化
Keywords:
civil aircraft ram air turbine (RAT) Modelica actuator modeling simulation design parameter optimization
分类号:
V262
DOI:
10.3724/SP.J.1249.2021.04419
文献标志码:
A
摘要:
作动机构是保证冲压空气涡轮(ram air turbine, RAT)系统正常启动和工作的关键,为提高RAT系统作动机构的可靠性,提出一种基于多领域统一建模语言Modelica的RAT作动机构仿真建模及设计参数优化方法.基于实际使用案例建立故障树,明确导致作动机构主要故障模式的组件;采用Modelica语言对RAT作动机构进行仿真建模,对比实际使用情况,验证模型正确性,模型误差约为3.78%;针对相关组件的设计参数对作动机构展开时间和末端速度的敏感性分析,得出主要影响参数;为避免液压油压力过大造成泄漏,在满足作动机构展开时间及末端展开速度约束的前提下,以确定液压油峰值压力最小时的设计参数为目标,仿真得到最优参数设计值.研究成果可为中国RAT正向设计提供参考.
Abstract:
The actuator is the key to ensure the normal startup and operation of the ram air turbine (RAT) system. In order to improve the reliability of the actuator of the RAT system, we propose a RAT actuator simulation modeling and design parameter optimization method based on the multi domain unified modeling language Modelica. Firstly, a fault tree is established to identify the components that cause the main failure modes of the actuator based on the actual cases of the RAT. Secondly, the model of RAT actuator is built by using Modelica language. The correctness of the model is verified by comparing with the actual use, with the error of about 3.78%. Finally, in order to avoid oil leakage caused by excessive hydraulic oil pressure, under the premise of meeting the constraints of the actuator deployment time and the end deployment speed, the optimal design parameters are determined by simulation when the peak pressure of the hydraulic oil is minimized. The research results can provide reference for the forward design of RAT in China and have good engineering application value.

参考文献/References:

[1] KOEMER M. Recent developments in aircraft emergency power[C]// The 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC). Las Vegas, USA: IEEE, 2015: 12-19.
[2] MANWELL J F, MCGOWAN J G, ROGERS A L. Wind energy explained: theory, design and application[M]. New Jersey, USA: John Wiley & Sons, 2006.
[3] WANG Jian. Research on several similarity criteria of ram air turbine operating under high-low altitude[C]// CSAA International Conference on Aircraft Utility Systems. Beijing: IEEE, 2016: 88-92.
[4] 李平,翟笑天. 冲压空气涡轮地面定期检查方法研究[J].航空维修与工程, 2015(8): 52-54.
LI Ping, ZHAI Xiaotian. Research on ground scheduled inspection method for RAT[J]. Aviation Maintenance & Engineering, 2015(8): 52-54.(in Chinese)
[5] BANNON D G, SEIDEL W E. Ram air turbine speed sensing ball detent over-speed prevention mechanism: 11148040[P]. 2005-06-08.
[6] SWEARINGEN P, MARKS S J. Automatic ram air turbine deployment: 13052797[P]. 2011-03-21.
[7] 中国民航局. 运输类飞机适航标准CCAR-25-R4.671(d)[S].
Civil Aviation Administration of PRC. Airworthiness standards for transport aircraft CCAR-25-R4.671(d)[S].(in Chinese).
[8] CHILMAN J A, WALL R J. Ram-air turbines: 3635584[P]. 1972-01-18.
[9] 周秀博. 冲压空气涡轮的气动设计与数值模拟[D]. 北京: 北京化工大学, 2018.
ZHOU Xiubo. Blade design and numerical simulation of ram air turbine[D]. Beijing: Beijing University of Chemical Technology, 2018.(in Chinese)
[10] 王永鑫, 崔宇. 冲压空气涡轮在民用涡桨飞机中的应用[J]. 航空制造技术, 2014(14): 86-88.
WANG Yongxin, CUI Yu. Application of ram air turbine in civil turbo-prop aircraft[J]. Aeronautical Manufacturing Technology, 2014(14): 86-88.(in Chinese)
[11] 周连骏, 卢岳良, 杜鑫,等. 冲压空气涡轮展开过程联合仿真研究[J]. 机械制造与自动化, 2019, 48(1):124-128.
ZHOU Lianjun, LU Yueliang, DU Xin, et al. Joint simulation of deployment process for ram air turbine[J]. Machine Building & Automation, 2019, 48(1): 124-128.(in Chinese)
[12] 夏天翔,卢岳良,柯兵. 飞机冲压空气涡轮系统的动态特性分析[J]. 航空学报, 2020, 41(3): 309-319.
XIA Tianxiang, LU Yueliang, KE Bing. Analysis of dynamic behavior of aircraft ram air turbine system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 309-319.(in Chinese)
[13] TORELLA G, PALMESANO G. The development of a virtual test bed for gas turbine engines[C]// The 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, USA: AIAA, 2013: 2003-2651.
[14] BAUER R P, STEVENS C G. Load shedding circuit for ram air turbine: 13232199[P]. 2011-09-14.
[15] 朱明清. 基于Modelica的液体火箭推进系统故障仿真及系统实现[D]. 武汉: 华中科技大学, 2016.
ZHU Mingqing. Fault simulation and software development of liquid rocket propulsion system based on Modelica[D]. Wuhan: Huazhong University of Science and Technology, 2016.(in Chinese)
[16] 高立刚, 吕群贤. 设备失效根本原因分析技术和方法及其在广东核电的应用[J]. 核科学与工程, 2004(2): 105-111.
GAO Ligang, L Qunxian. The methodology of root cause analysis for equipment failure and its application at Guangdong nuclear power stations[J]. Chinese Journal of Nuclear Science and Engineering, 2004(2): 105-111.(in Chinese)
[17] 李光辉, 秦建华, 蒋芳明,等. 浅析事件树分析法在装载机液力传动系统故障分析中的应用[J]. 河北农机, 2019(12): 32-33.
LI Guanghui, QIN Jianhua, JIANG Fangming, et al. Analysis on the application of event tree analysis in fault analysis of loader hydraulic transmission system[J]. Hebei Agricultural Machinery, 2019(12): 32-33.(in Chinese)
[18] 邢广华, 鲍晗, 左洪福. 运输类飞机持续适航事件根原因分析[J]. 南京航空航天大学学报, 2018, 50(6): 842-847.
XING Guanghua, BAO Han, ZUO Hongfu. RCA for continued airworthiness events of transport category airplane[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2018, 50(6): 842-847. (in Chinese)
[19] 吴彦农, 焦峰, 马国强, 等. 应用屏障分析法对某电厂取水口堵塞事件进行根本原因分析[J]. 核科学与工程, 2019, 39(4): 601-605.
WU Yannong, JIAO Feng, MA Guoqiang, et al. Application of barrier analysis method to analyze the cause of blockage in intake of a nuclear power plant[J]. Nuclear Science and Engineering, 2019, 39(4): 601-605.(in Chinese)
[20] 吕航. 城市隧道邻近建筑物的安全评价[D]. 大连:大连理工大学, 2015.
L Hang. Security assessment of buildings closed to the urban tunnels[D]. Dalian: Dalian University of Technology, 2015.(in Chinese)
[21] 徐炜辰. 根本原因分析的研究——常用根本原因分析工具和方法的比较[J]. 项目管理技术, 2015, 13(5): 61-64.
XU Weichen. Research on root cause analysis: comparison of common root cause analysis tools and methods[J]. Project Management Technology, 2015, 13(5): 61-64.(in Chinese)
[22] 卜晓敏. 航空人为因素事故/事件分析模型研究[D]. 天津:中国民航大学,2008.
BU Xiaomin. Research on human factor analysis model of accident/incident[D]. Tianjin: China Civil Aviation University, 2008. (in Chinese)
[23] 李妍, 韩莎莎, 黄明才. 地铁列车接触器故障的鱼骨图法分析及应对措施[J]. 现代城市轨道交通, 2010(3): 42-44.
LI Yan, HAN Shasha, HUANG Mingcai. Fishbone diagram analysis and countermeasures of metro train contactor failure[J]. Modern Urban Transit, 2010(3): 42-44.(in Chinese)
[24] 李玲, 李洪伟, 李旭东. 某型飞机作动筒常见故障分析及维护[J].新技术新工艺, 2014(5): 122-124.
LI Ling, LI Hongwei, LI Xudong. Common fault analysis and maintenance of hydraulic actuating cylinder of a kind of aircraft[J]. New Technology & New Process, 2014(5): 122-124.(in Chinese)

备注/Memo

备注/Memo:
Received:2020-07-04;Accepted:2020-11-25;Online(CNKI):2021-05-17
Foundation:Fundamental Research Foundation for the Central Universities of China (NP2019408)
Corresponding author:Professor CAI Jing. E-mail: caijing@nuaa.edu.cn
Citation:HUANG Yan, CAI Jing, DAI Dingqiang. Modelica-based simulation and optimization of design parameters of RAT actuator[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(4): 419-426.(in Chinese)
基金项目:中央高校基本科研业务专项基金资助项目(NP2019408)
作者简介:黄艳(1996—),南京航空航天大学硕士研究生.研究方向:适航技术与管理、产品安全与仿真.E-mail:hy08861@126.com
引文:黄艳,蔡景,代定强. 基于Modelica的RAT作动机构仿真及设计参数优化[J]. 深圳大学学报理工版,2021,38(4):419-426.
更新日期/Last Update: 2021-07-30