[1]胡歆迪,杨鑫,周旭,等.智能化婴儿髋关节发育性不良辅助筛查系统[J].深圳大学学报理工版,2021,38(4):408-418.[doi:10.3724/SP.J.1249.2021.04408]
 HU Xindi,YANG Xin,ZHOU Xu,et al.Intelligent auxiliary screening system for developmental dysplasia of the hip of infants[J].Journal of Shenzhen University Science and Engineering,2021,38(4):408-418.[doi:10.3724/SP.J.1249.2021.04408]
点击复制

智能化婴儿髋关节发育性不良辅助筛查系统()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第4期
页码:
408-418
栏目:
电子与信息科学
出版日期:
2021-07-07

文章信息/Info

Title:
Intelligent auxiliary screening system for developmental dysplasia of the hip of infants
文章编号:
202104011
作者:
胡歆迪1杨鑫2周旭2王丽敏3梁永栋3尚宁3倪东2顾宁1
1) 南京医科大学生物医生工程与信息学院,江苏南京211166
2)深圳大学医学部生物医学工程学院,广东深圳 518060
3)广东省妇幼保健院超声诊断科,广东广州511400
Author(s):
HU Xindi1 YANG Xin2 ZHOU Xu2 WANG Limin3 LIANG Yongdong3 SHANG Ning3 NI Dong2 and GU Ning1
1) School of Biomedical Engineering and Information, Nanjing Medical University, Nanjing 211166, Jiangsu Province, P.R.China
2) School of Biomedical Engineering, Shenzhen University, Health Science Center, Shenzhen 518060, Guangdong Province, P.R.China
3) Ultrasound Department, Guangdong Women and Children Hospital, Guangzhou 511400, Guangdong Province, P.R.China
关键词:
人工智能髋关节发育性不良标准切面图像分类实例分割计算机辅助诊断深度学习特征提取
Keywords:
artificial intelligence developmental dysplasia of the hip standard plane image classification instance segmentation computer aided diagnosis deep learning feature extraction
分类号:
R318; TP751
DOI:
10.3724/SP.J.1249.2021.04408
文献标志码:
A
摘要:
髋关节发育性不良(developmental dysplasia of the hip, DDH)是常见的先天性关节疾病之一.目前临床上常采用Graf法对婴儿进行髋关节超声筛查,以提早发现病情,提高治愈率.Graf方法高度依赖标准切面的选取和关键解剖结构的识别,对医生的知识和经验要求较高.提出智能化婴儿DDH辅助筛查系统,建立自动化筛查流程,实现自动识别标准切面并测量发育指标α角和β角.标准切面自动识别模块基于少样本单类别分类(few-shot one-class classifier, FOC)的神经网络,通过自监督训练方式学习标准切面的特征信息,预测图像的标准化得分. α角和β角快速测量模块基于快速实例网络(fast instance network, FIN),通过高效的单阶段的网络架构和多任务学习模式,对标准切面实时测量并将结果可视化.分别通过自动识别标准切面和自动测量发育指标两类实验对所建立的辅助筛查系统进行验证.与单类别支持向量机、深度支持向量数据描述网络和Ganomaly网络相比,FOC方法的接受者操作特征曲线下面积达到76.43%,性能最优;与全卷积网络、Unet和deeplab V3相比,采用FIN模块测量的α角和β角的平均绝对误差分别为2.48°和4.38°,推理速度达到33.88帧/s,速度最快且性能最优.实验结果表明,该系统可降低对训练数据量的依赖,有助于提升DDH临床筛查的同质化水平,控制测量质量,提高临床筛查的工作效率.
Abstract:
Developmental dysplasia of the hip (DDH) is one of the common congenital joint diseases. In order to find the disease as early as possible and thus improve the cure rate, the Graf method is often used in the clinical diagnose of DDH by early ultrasound screening of hip joints of infants. The method highly depends on the selection of standard planes and identification of key anatomical structures, which requires the high level knowledge and experience of physicians. This study proposes an intelligent infant DDH auxiliary screening system. It is designed to realize the automatic identification of standard planes and measure two indicators, i.e., α angle and β angle. A few-shot one-class classifier (FOC) is used as the automatic recognition standard plane module which can recognize the standard planes from hip joint ultrasound videos, learn the features of standard planes with self-supervised training, and predict the image standardized score. A fast instance network (FIN) is served as the automatic fast measurement module which measures two angles on the standard plane in real-time and visualizes the results through the one-stage architecture and multi-task learning mode. The performance of our system is verified with two kinds of experiments: automatic identification of the standard plane and automatic measurement of development indicators. Compared with other one-class classifiers, such as one-class support vector machine, deep support vector data description, and Ganomaly, the proposed method obtains better prediction performance with the area under the receiver operating characteristic curve 76.43%. Compared with other common neural networks, such as full convolutional network, Unet and deeplab V3, the FOC method obtains better prediction performance with lower computation complexity, i.e., the average errors in α and β angles are 2.48° and 4.38° and the inference speed is 33.88 frames/s. The experimental results show that the system can reduce the dependence on amount of training data, improve the homogeneity level of clinical screening for DDH, control the quality of measurement, and improve the efficiency of clinical screening.

参考文献/References:

[1] KANG Y R,KOO J. Ultrasonography of the pediatric hip and spine[J]. Ultrasonography, 2017, 36(3): 239-251.
[2] SHORTER D, HONG T, OSBORN D A. Cochrane review: screening programs for developmental dysplasia of the hip in newborn infants[J]. Evidence-Based Child Health: a Cochrane Review Journal, 2013, 8(1): 11-54.
[3] KOCER H E, CEVIK K K, SIVRI M, et al. Measuring the effect of filters on segmentation of developmental dysplasia of the hip[J]. Iranian Journal of Radiology, 2016, 13(3):e25491.
[4] GRAF R. Hip sonography: diagnosis and management of infant hip dysplasia[M]. Berlin: Springer Science & Business Media, 2006.
[5] QUADER N, HODGSON A J, MULPURI K, et al. Automatic evaluation of scan adequacy and dysplasia metrics in 2-D ultrasound images of the neonatal hip[J]. Ultrasound in Medicine & Biology, 2017, 43(6): 1252-1262.
[6] CHEN Hao, WU Lingyun, DOU Qi, et al. Ultrasound standard plane detection using a composite neural network framework[J]. IEEE Transactions on Cybernetics, 2017, 47(6): 1576-1586.
[7] CHEN Hao, DOU Qi, NI Dong, et al. Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015,9349: 507-514.
[8] YU Zhen, NI Dong, CHEN Siping, et al. Fetal facial standard plane recognition via very deep convolutional networks[C]// The 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.[S. l.]: IEEE, 2016: 627-630.
[9] QUADER N, HODGSON A, MULPURI K, et al. Automatic assessment of developmental dysplasia of the hip[C]// The 12th International Symposium on Biomedical Imaging. New York, USA: IEEE, 2015: 13-16.
[10] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 3431-3440.
[11] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-assisted Intervention. Berlin: Springer, 2015: 234-241.
[12] EL-HARIRI H, MULPURI K, HODGSON A, et al. Comparative evaluation of hand-engineered and deep-learned features for neonatal hip bone segmentation in ultra-sound[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2019:12-20.
[13] ZHANG Zichen, TANG Min, COBZAS D, et al. End-to-end detection-segmentation network with ROI convolution[C]// The 15th International Symposium on Biomedical Imaging.[S.l.]: IEEE, 2018: 1509-1512.
[14] HAREENDRANATHAN A R, ZONOOBI D, MABEE M, et al. Toward automatic diagnosis of hip dysplasia from 2D ultrasound[C]// The 14th International Symposium on Biomedical Imaging. Melbourne, Australia: IEEE, 2017: 982-985.
[15] SEZER A, SEZER H B. Deep convolutional neural network-based automatic classification of neonatal hip ultrasound images: a novel data augmentation approach with speckle noise reduction[J]. Ultrasound in Medicine and Biology, 2020, 46(3): 735-749.
[16] KHAN S S, MADDEN M G. A survey of recent trends in one class classification[C]// Irish Conference on Artificial Intelligence and Cognitive Science. Berlin: Springer, 2009: 188-197.
[17] CHEN Yunqiang, ZHOU Xiang, HUANG T S . One-class SVM for learning in image retrieval[C]// Proceedings of International Conference on Image Processing.[S. l.]: IEEE, 2001, 1: 34-37.
[18] RUFF L, VANDERMEULEN R A, GRNITIZ N, et al. Deep one-class classification[C]// International Conference on Machine Learning.[S. l.: s. n.], 2018: 4393-4402.
[19] GOLAN I, EL-YANIV R. Deep anomaly detection using geometric transformations[EB/OL]. (2018-05-28)[2021-02-04]. https://arxiv.org/abs/1805.10917.
[20] HENDRYCKS D, MAZEIKA M, KADAVATH S, et al. Using self-supervised learning can improve model robustness and uncertainty[EB/OL]. (2019-06-28)[2021-02-04]. https://arxiv.org/abs/1906.12340.
[21] KINGMA D P, WELLING M. Auto-encoding variational bayes[J]. (2013-12-20)[2021-02-04]. https://arxiv.org/abs/1312.6114.
[22] AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[C]// Asian Conference on Computer Vision. Berlin: Springer, 2018: 622-637.
[23] ZONG Bo, SONG Qi, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]// International Conference on Learning Representations. Vancouver, Canada:[s. n.], 2018: 1-19.
[24] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2016:770-778.
[25] HE Kaiming, GKIOXARI G, DOLLR P, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2961-2969.
[26] BOLYA D, ZHOU Chong, XIAO Fanyi, et al. Yolact: real-time instance segmentation[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seouul: IEEE, 2019: 9157-9166.
[27] LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 2117-2125.
[28] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
[29] QUADER N, HODGSON A J, MULPURI K, et al. Automatic evaluation of scan adequacy and dysplasia metrics in 2-D ultrasound images of the neonatal hip[J]. Ultrasound in Medicine & Biology, 2017, 43(6): 1252-1262.
[30] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-06-17)[2021-02-04]. https://arxiv.org/abs/1706.05587.

相似文献/References:

[1]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
 PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(4):211.
[2]骆剑平,李霞.求解TSP的改进混合蛙跳算法[J].深圳大学学报理工版,2010,27(2):173.
 LUO Jian-ping and LI Xia.Improved shuffled frog leaping algorithm for solving TSP[J].Journal of Shenzhen University Science and Engineering,2010,27(4):173.
[3]蔡良伟,李霞.基于混合蛙跳算法的作业车间调度优化[J].深圳大学学报理工版,2010,27(4):391.
 CAI Liang-wei and LI Xia.Optimization of job shop scheduling based on shuffled frog leaping algorithm[J].Journal of Shenzhen University Science and Engineering,2010,27(4):391.
[4]张重毅,刘彦斌,于繁华,等.CDA市场环境模型进化研究[J].深圳大学学报理工版,2010,27(4):413.
 ZHANG Zhong-yi,LIU Yan-bin,YU Fan-hua,et al.Research on the evolution model of CDA market environment[J].Journal of Shenzhen University Science and Engineering,2010,27(4):413.
[5]姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报理工版,2014,31(1):43.[doi:10.3724/SP.J.1249.2014.01043]
 Jiang Jianguo,Zhou Jiawei,Zheng Yingchun,et al.A double flora bacteria foraging optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(4):43.[doi:10.3724/SP.J.1249.2014.01043]
[6]蔡良伟,刘思麒,李霞,等.基于蚁群优化的正则表达式分组算法[J].深圳大学学报理工版,2014,31(3):279.[doi:10.3724/SP.J.1249.2014.03279]
 Cai Liangwei,Liu Siqi,Li Xia,et al.Regular expression grouping algorithm based on ant colony optimization[J].Journal of Shenzhen University Science and Engineering,2014,31(4):279.[doi:10.3724/SP.J.1249.2014.03279]
[7]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
 Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
[8]刘万峰,李霞.车辆路径问题的快速多邻域迭代局部搜索算法[J].深圳大学学报理工版,2015,32(2):196.[doi:10.3724/SP.J.1249.2015.02000]
 Liu Wanfeng,and Li Xia,A fast multi-neighborhood iterated local search algorithm for vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2015,32(4):196.[doi:10.3724/SP.J.1249.2015.02000]
[9]蔡良伟,程璐,李军,等.基于遗传算法的正则表达式规则分组优化[J].深圳大学学报理工版,2015,32(3):281.[doi:10.3724/SP.J.1249.2015.03281]
 Cai Liangwei,Cheng Lu,Li Jun,et al.Regular expression grouping optimization based on genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2015,32(4):281.[doi:10.3724/SP.J.1249.2015.03281]
[10]王守觉,鲁华祥,陈向东,等.人工神经网络硬件化途径与神经计算机研究[J].深圳大学学报理工版,1997,14(1):8.
 Wang Shoujue,Lu Huaxiang,Chen Xiangdong and Zeng Yujuan.On the Hardware for Artificial Neural Networks and Neurocomputer[J].Journal of Shenzhen University Science and Engineering,1997,14(4):8.

备注/Memo

备注/Memo:
Received:2021-02-23;Accepted:2021-04-04;Online (CNKI): 2021-06-08
Foundation:National Key R & D Program of China (2019YFC0118300)
Corresponding author:Professor GU Ning. E-mail: guning@seu.edu.cn
Citation:HU Xindi, YANG Xin, ZHOU Xu, et al. Intelligent auxiliary screening system for developmental dysplasia of the hip of infants[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(4): 408-418.(in Chinese)
基金项目:国家重点研发计划资助项目(2019YFC0118300)
作者简介:胡歆迪(1996—),南京医科大学硕士研究生.研究方向:医学图像处理.E-mail:h15851832081@163.com
引文:胡歆迪,杨鑫,周旭,等.智能化婴儿髋关节发育性不良辅助筛查系统[J]. 深圳大学学报理工版,2021,38(4):408-418.
更新日期/Last Update: 2021-07-30