[1]董必钦,孔钟,吴育盛,等.水泥基材料离子迁移过程的可视化与定量分析[J].深圳大学学报理工版,2021,38(4):387-392.[doi:10.3724/SP.J.1249.2021.04387]
 DONG Biqin,KONG Zhong,WU Yusheng,et al.Visualization and quantitative research of ion migration process in cement-based materials[J].Journal of Shenzhen University Science and Engineering,2021,38(4):387-392.[doi:10.3724/SP.J.1249.2021.04387]
点击复制

水泥基材料离子迁移过程的可视化与定量分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第4期
页码:
387-392
栏目:
土木建筑工程
出版日期:
2021-07-07

文章信息/Info

Title:
Visualization and quantitative research of ion migration process in cement-based materials
文章编号:
202104008
作者:
董必钦孔钟吴育盛洪舒贤
深圳大学土木与交通工程学院,广东省滨海土木工程耐久性重点实验室,广东深圳518060
Author(s):
DONG Biqin KONG Zhong WU Yusheng and HONG Shuxian
College of Civil and Transportation Engineering, Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
建筑材料水泥离子迁移X射线断层扫描技术无损检测可视化分析
Keywords:
building materials cement ion migration X-ray computed tomography nondestructive testing visualization analysis
分类号:
TU528
DOI:
10.3724/SP.J.1249.2021.04387
文献标志码:
A
摘要:
氯离子的侵蚀是引起滨海混凝土钢筋锈蚀的关键因素之一.为探索离子在水泥基材料中的原位迁移过程,利用X射线计算机断层扫描(X-ray computed tomography, XCT)技术,以碘化物为示踪剂,对掺有粉煤灰的水泥基材料的离子迁移过程进行无损分析.结果表明,XCT技术可以对离子在水泥基材料中的迁移过程进行无损、可视化跟踪,并能精确定量离子在样品内的浓度分布.将XCT与滴定法分别测得的离子浓度进行对比,证明了XCT测试结果的准确性.
Abstract:
The erosion of chloride ions is one of the key factors of concrete reinforcement corrosion in coastal area. In order to explore the in-situ migration process of ions in cement-based materials, the X-ray computed tomography (XCT) is used to analyze the migration process using iodide as tracer in cement-based materials mixed with fly ash. The results show that XCT technology can track the ion migration process in cement-based materials non-destructively and visually, and accurately quantify the concentration distribution of ions in the specimens. And the accuracy of XCT test results is proved by comparing the ion concentration measured by XCT and titration method.

参考文献/References:

[1] WANG Yunyao, SHUI Zhonghe, GAO Xu, et al. Understanding the chloride binding and diffusion behaviors of marine concrete based on Portland limestone cement-alumina enriched pozzolans[J]. Construction and Building Materials, 2019, 198: 207-217.
[2] ZHANG Yun, ZHOU Xiaoyun, ZHAO Jing, et al. Time dependency and similarity of decay process of chloride diffusion in concrete under simulated marine tidal environment[J]. Construction and Building Materials, 2019, 205: 332-343.
[3] 史才军, 元强, 邓德华, 等. 混凝土中氯离子迁移特征的表征[J]. 硅酸盐学报, 2007, 35(4): 522-530.
SHI Caijun, YUAN Qiang, DENG Dehua, et al. Test methods for the transport of chloride ion in concrete[J]. Journal of the Chinese Ceramic Society, 2007, 35(4): 522-530.(in Chinese)
[4] 吴建华, 张亚梅. 混凝土抗氯离子渗透性试验方法综述[J]. 混凝土, 2009(2): 38-41.
WU Jianhua, ZHANG Yamei. Overview of test methods of chloride ion penetration in concrete[J]. Concrete, 2009(2): 38-41.(in Chinese)
[5] 陈天垦. 电位滴定法测定混凝土外加剂氯离子含量中的问题与改良方法探讨[J]. 建材与装饰, 2016(14): 88-89.
CHEN Tianken. The problems and improvement methods of potentiometric titration in the determination of chloride ion content of concrete admixture are discussed[J]. Building Materials and Decoration, 2016(14): 88-89.(in Chinese)
[6] LIU Jun, OU Guangfeng, QIU Qiwei, et al. Chloride transport and microstructure of concrete with/without fly ash under atmospheric chloride condition[J]. Construction and Building Materials, 2017, 147: 493-501.
[7] 高天霞. 电位滴定法测定混凝土外加剂氯离子含量不确定度分析研究[J]. 广东建材, 2014, 30(8):17-19.
GAO Tianxia. Determination of chloride ion content uncertainty of concrete admixture by potentiometric titration method[J]. Guangdong Building Materials, 2014, 30(8): 17-19.(in Chinese)
[8] MORADLLO M K, SUDBRINK B, HU Q, et al. Using micro X-ray fluorescence to image chloride profiles in concrete[J]. Cement and Concrete Research, 2016, 92: 128-141.
[9] RYDBERG J. Wavelength dispersive X-ray fluorescence spectroscopy as a fast, non-destructive and cost-effective analytical method for determining the geochemical composition of small loose-powder sediment samples[J]. Journal of Paleolimnology, 2014, 52(3): 265-276.
[10] MONTEMOR M F, SIMOES A M P, SALTA M M. Effect of fly ash on concrete reinforcement corrosion studied by EIS[J]. Cement and Concrete Composites, 2000, 22(3): 175-185.
[11] DONG Biqin, WU Yusheng, TENG Xiaojuan, et al. Investigation of the Cl- migration behavior of cement materials blended with fly ash or/and slag via the electrochemical impedance spectroscopy method[J]. Construction and Building Materials, 2019, 211: 261-270.
[12] LOCHE J M, AMMAR A, DUMARGUE P. Influence of the migration of chloride ions on the electrochemical impedance spectroscopy of mortar paste[J]. Cement and Concrete Research, 2005, 35(9): 1797-1803.
[13] DERLUYN H, GRIFFA M, MANNES D, et al. Characterizing saline uptake and salt distributions in porous limestone with neutron radiography and X-ray micro-tomography[J]. Journal of Building Physics, 2013, 36(4): 353-374.
[14] TIAN Ye, CHEN Changchang, JIN Nanguo, et al. An investigation on the three-dimensional transport of chloride ions in concrete based on X-ray computed tomography technology[J]. Construction and Building Materials, 2019, 221: 443-455.
[15] YANG Yonggan, ZHANG Yunsheng, SHE Wei, et al. In situ observing the erosion process of cement pastes exposed to different sulfate solutions with X-ray computed tomography[J]. Construction and Building Materials, 2018, 176: 556-565.
[16] MORADLLO K M, HU Qinang, LEY M T. Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials[J]. Construction and Building Materials, 2017, 136: 88-98.
[17] SONG Zijian, JIANG Linhua, CHU Hongqiang, et al. Evaluation research on applicability of rapid iodide migration test[J]. Journal of Wuhan University of Technology-Mater Science, 2014, 29(2): 329-333.
[18] DEBOODT T, WILDENSCHILD D, Ideker J H, et al. Use of iodine for improving phase quantification using X-ray tomography[J]. Cement and Concrete Research, 2019, 116: 102-112.
[19] 刘军. 基于碘离子传输特征的混凝土渗透性评价方法研究[D]. 长沙: 中南大学, 2013.
LIU Jun. Permeability evaluation method of concrete Based on the transport characteristics of iodide ions[D]. Changsha: Central South University, 2013.(in Chinese)
[20] HE Fuqiang, SHI Caijun, YUAN Qiang, et al. Calculation of chloride concentration at color change boundary of AgNO3 colorimetric measurement[J]. Cement and Concrete Research, 2011, 41(11): 1095-1103.
[21] JGJ/T 322—2013 混凝土中氯离子含量检测规程[S].
JGJ/T 322—2013 Technical specification for test of chloride ion content in concrete[S].(in Chinese)
[22] KRUMM M, KASPERL S, FRANZ M. Reducing non-linear artifacts of multi-material objects in industrial 3D computed tomography[J]. Nondestructive Testing and Evaluation International, 2008,41: 242-251.
[23] FANG Guohao, DING Weijian, LIU Yuqing, et al. Identification of corrosion products and 3D distribution in reinforced concrete using X-ray micro computed tomography[J]. Construction and Building Materials, 2019, 207: 304-315.
[24] HONG Shuxian, QIN Shaofeng, YAO Wanqiong, et al. Visualized tracing of capillary absorption process in cementitious material based on X-ray computed tomography[J]. Cement and Concrete Composites, 2020, 107, 103487.

相似文献/References:

[1]张亚芳,陈江平.不同掺量玻璃纤维增强水泥细观数值研究[J].深圳大学学报理工版,2010,27(1):103.
 ZHANG Ya-fang and CHEN Jiang-ping.Numerical study on glass fiber reinforced cement with different incorporation rates[J].Journal of Shenzhen University Science and Engineering,2010,27(4):103.
[2]刘贤淼,江泽慧,费本华.玻璃纤维布增强造纸脱墨污泥纤维板性能研究[J].深圳大学学报理工版,2012,29(No.4(283-376)):371.[doi:10.3724/SP.J.1249.2012.04371]
 LIU Xian-miao,JIANG Ze-hui,and FEI Ben-hua.Paper deinking sludge fiberboard reinforced by fiberglass fabric[J].Journal of Shenzhen University Science and Engineering,2012,29(4):371.[doi:10.3724/SP.J.1249.2012.04371]
[3]付晔,李庆华,徐世烺.高温后纳米改性水泥基材料的残余抗折强度[J].深圳大学学报理工版,2014,31(2):187.[doi:10.3724/SP.J.1249.2014.02187]
 Fu Ye,Li Qinghua,and Xu Shilang.The effects of high temperature on flexural strengths of high performance nano-modified cementitious composites[J].Journal of Shenzhen University Science and Engineering,2014,31(4):187.[doi:10.3724/SP.J.1249.2014.02187]
[4]彭家惠,刘先锋,张建新,等.磷酸盐对α半水脱硫石膏凝结硬化的作用机理[J].深圳大学学报理工版,2014,31(4):388.[doi:10.3724/SP.J.1249.2014.04388]
 Peng Jiahui,Liu Xianfeng,Zhang Jianxin,et al.Mechanisms of phosphate on the hydration and hardening of α-hemihydrate desulfurization gypsum[J].Journal of Shenzhen University Science and Engineering,2014,31(4):388.[doi:10.3724/SP.J.1249.2014.04388]
[5]倪卓,邢锋,石开勇,等.微胶囊对水泥自修复复合材料微观结构的影响[J].深圳大学学报理工版,2015,32(1):68.[doi:10.3724/SP.J.1249.2015.01068]
 Ni Zhuo,Xing Feng,Shi Kaiyong,et al.Influence of microcapsule on microcosmic structure of self-healing cementitious composite[J].Journal of Shenzhen University Science and Engineering,2015,32(4):68.[doi:10.3724/SP.J.1249.2015.01068]
[6]童芸芸,叶良,马超.钢筋腐蚀产物实时检测的再钝化机理分析[J].深圳大学学报理工版,2017,34(1):75.[doi:10.3724/SP.J.1249.2017.01075]
 Tong Yunyun,Ye Liang,and Ma Chao.Real time analysis on repassivation mechanism of steel rebar corrosion products[J].Journal of Shenzhen University Science and Engineering,2017,34(4):75.[doi:10.3724/SP.J.1249.2017.01075]
[7]刘昱清,董鹏,滕晓娟,等.基于X-ray μCT技术的钢筋锈胀特征分析[J].深圳大学学报理工版,2017,34(6):618.[doi:10.3724/SP.J.1249.2017.06618]
 Liu Yuqing,Dong Peng,Teng Xiaojuan,et al.Characterization of corrosion expansion feature of steel bar by means of X-ray μCT[J].Journal of Shenzhen University Science and Engineering,2017,34(4):618.[doi:10.3724/SP.J.1249.2017.06618]
[8]丁铸,孙晨,戴梦希.磷酸盐水泥砂浆作为锚固胶的性能研究[J].深圳大学学报理工版,2018,35(2):132.[doi:10.3724/SP.J.1249.2018.02132]
 DING Zhu,SUN Chen,and DAI Mengxi.Properties of phosphate cement mortar as an anchorage adhesive[J].Journal of Shenzhen University Science and Engineering,2018,35(4):132.[doi:10.3724/SP.J.1249.2018.02132]
[9]刘斌清,仵江涛,陈华鑫,等.多聚磷酸改性沥青的路用性能及机理分析[J].深圳大学学报理工版,2018,35(3):292.[doi:10.3724/SP.J.1249.2018.03292]
 LIU Binqing,WU Jiangtao,et al.Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J].Journal of Shenzhen University Science and Engineering,2018,35(4):292.[doi:10.3724/SP.J.1249.2018.03292]
[10]董必钦,郭邦文,刘昱清,等.水泥净浆水分传输过程可视化表征与定量分析[J].深圳大学学报理工版,2018,35(3):285.[doi:10.3724/SP.J.1249.2018.03285]
 DONG Biqin,GUO Bangwen,LIU Yuqing,et al.Visualization and quantitative analysis of water transport evolution in cementitious materials[J].Journal of Shenzhen University Science and Engineering,2018,35(4):285.[doi:10.3724/SP.J.1249.2018.03285]
[11]董必钦,刘静宜,林琛,等.粉煤灰复合水泥基材料的孔结构反演模型分析[J].深圳大学学报理工版,2020,37(4):389.[doi:10.3724/SP.J.1249.2020.04389]
 DONG Biqin,LIU Jingyi,LIN Chen,et al.Inverse model of capillary pore distribution of fly ash mixed cement materials[J].Journal of Shenzhen University Science and Engineering,2020,37(4):389.[doi:10.3724/SP.J.1249.2020.04389]
[12]刘建,刘派,丁铸.磷酸盐基矿聚物材料的制备与机理研究[J].深圳大学学报理工版,2020,37(6):597.[doi:10.3724/SP.J.1249.2020.06597]
 LIU Jian,LIU Pai,and DING Zhu.Preparation and mechanism of phosphate based geopolymer[J].Journal of Shenzhen University Science and Engineering,2020,37(4):597.[doi:10.3724/SP.J.1249.2020.06597]

备注/Memo

备注/Memo:
Received:2020-05-29;Accepted:2020-11-14;Online(CNKI):2021-06-11
Foundation:National Natural Science Foundation of China (51727813,51925805)
Corresponding author:Associate professor HONG Shuxian.E-mail: sxhong@szu.edu.cn
Citation:DONG Biqin,KONG Zhong,WU Yusheng, et al.Visualization and quantitative research of ion migration process in cement-based materials[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(4): 387-392.(in Chinese)
基金项目:国家自然科学基金资助项目(51727813,51925805)
作者简介:董必钦(1973—),深圳大学教授. 研究方向:混凝土耐久性与功能建材. E-mail: incise@szu.edu.cn
引文:董必钦,孔钟,吴育盛,等.水泥基材料离子迁移过程的可视化与定量分析[J]. 深圳大学学报理工版,2021,38(4):387-392.
更新日期/Last Update: 2021-07-30