[1]卢娟,张亚芳,程从密,等.纤维掺量对玻璃纤维增强水泥板弯曲性能的影响[J].深圳大学学报理工版,2021,38(4):380-386.[doi:10.3724/SP.J.1249.2021.04380]
 LU Juan,ZHANG Yafang,CHENG Congmi,et al.Effect of fiber content on bending performance of glass fiber reinforced cement slab[J].Journal of Shenzhen University Science and Engineering,2021,38(4):380-386.[doi:10.3724/SP.J.1249.2021.04380]
点击复制

纤维掺量对玻璃纤维增强水泥板弯曲性能的影响()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第4期
页码:
380-386
栏目:
土木建筑工程
出版日期:
2021-07-07

文章信息/Info

Title:
Effect of fiber content on bending performance of glass fiber reinforced cement slab
文章编号:
202104007
作者:
卢娟张亚芳程从密霍永杰
广州大学土木工程学院,广东广州 510006
Author(s):
LU JuanZHANG YafangCHENG Congmiand HUO Yongjie
engineering material; glass fiber reinforced cement; glass fiber; bending performance; numerical simulation; fracture energy
关键词:
工程材料玻璃纤维增强水泥玻璃纤维弯曲性能数值模拟断裂能
Keywords:
engineering material glass fiber reinforced cement glass fiber bending performance numerical simulation fracture energy
分类号:
TB333
DOI:
10.3724/SP.J.1249.2021.04380
文献标志码:
A
摘要:
为探究纤维掺量对定向玻璃纤维增强水泥(glass fiber reinforced cement,GRC)弯曲性能的影响,在GRC板四点弯曲断裂试验的基础上,采用RFPA3D模拟软件建立三维数值模型,对比不同玻璃纤维掺量下GRC板的破坏模式,分析了试件荷载-位移曲线的发展规律,并通过断裂能研究了纤维的增强增韧作用. 结果表明,当掺杂的玻璃纤维的体积分数在0.5%~2.0%时,试件峰值荷载随着定向纤维体积分数的增加呈增大趋势;添加纤维的试件在底部出现裂缝后,仍具有一定的承载力,此时纤维虽然发生损伤但未断裂;随着纤维掺量的增加,试件的裂缝扩展路径愈加曲折,发生破坏时做的功更多,韧性更好. 研究结果可为定向玻璃纤维增强水泥材料的加固提供参考.
Abstract:
To investigate the effect of fiber content on the bending properties of oriented glass fiber reinforced cement (GRC), the four-point flexural test was used to get the fracture performance of oriented GRC slab, and a 3D numerical model is created by RFPA3D simulation software.The failure modes of the GRC slab with different glass fiber content are compared.The load-displacement curve of the specimen is analyzed, and the strengthening and toughening effect of the fiber is investigated by fracture energy. The results show that the peak load of the specimens enhances with the increase of the oriented fiber within volume fraction of 0.5% and 2.0%. The specimen with added fibers still has a certain bearing capacity when cracks appear at the bottom, and the fibers are damaged but not broken. With the increase of fiber content, the crack propagation path becomes more tortuous, the more work is done when failure occurs, and the better the toughness is. The study can provide a reference for reinforcement of directional GRC.

参考文献/References:

[1] EVANS A G, ZOK F W, DAVIS J. Role of interfaces in fiber-reinforced brittle matrix composites[J]. Composites Science and Technology, 1991, 42(1/2/3): 3-24.
[2] MCSWAIN A C, BERUBE K A, CUSATIS G, et al. Confinement effects on fiber pullout forces for ultra-high-performance concrete[J]. Cement and Concrete Composites, 2018, 91: 53-58.
[3] PRATHIPATI S R R T, RAO C B K. A study on the uniaxial behavior of hybrid graded fiber reinforced concrete with glass and steel fibers[J]. Materials Today: Proceedings, 2020, 32(4): 764-770.
[4] WU Tao, SUN Yijia, LIU Xi, et al. Flexural behavior of steel fiber-reinforced lightweight aggregate concrete beams reinforced with glass fiber-reinforced polymer bars[J]. Journal of Composites for Construction, 2019, 23(2): 04018081.1-04018081.13.
[5] PEDROSO A G, MEI L H I, AGNELLI J A M, et al. Properties that characterize the propagation of cracks of recycled glass fiber reinforced polyamide[J]. Polymer Testing, 1999, 18(3): 211-215.
[6] PEYVANDI A, SOROUSHIAN P. Structural performance of dry-cast concrete nanocomposite pipes[J]. Materials and Structures, 2015, 48(1/2): 461-470.
[7] PRATHIPATI S R R T, RAO C B K. A study on the uniaxial compressive behaviour of graded fiber reinforced concrete using glass fiber/steel fiber[J]. Innovative Infrastructure Solutions, 2021, 6(2): 1-14.
[8] TASSEW S T, LUBELL A S. Mechanical properties of glass fiber reinforced ceramic concrete[J]. Construction and Building Materials, 2014, 51(31): 215-224.
[9] ALGBURI A, SHEIKH M N, HADI M. Mechanical the properties of steel, glass, and hybrid fiber reinforced reactive powder concrete[J]. Frontiers of Structural and Civil Engineering, 2019, 13(4): 998-1006.
[10] LI Shengbin, HU Bingxu, ZHANG Fan. Preparation and properties of glass fiber/plant fiber reinforced cementitious composites[J]. Science of Advanced Materials, 2018, 10(7): 1028-1035.
[11] LASSILA L V J, NOHRSTR M T, VALLITTU P K. The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites[J]. Biomaterials, 2002, 23(10): 2221-2229.
[12] CORREIA J R, FERREIRA J, BRANCO F A. A rehabilitation study of sandwich GRC facade panels[J]. Construction and Building Materials, 2006, 20(8): 554-561.
[13] FERREIRA J G, BRANCO F A. Structural application of GRC in telecommunication towers[J]. Construction and Building Materials, 2007, 21(1): 19-28.
[14] PRA J, AMBROISE J. New applications of calcium sulfoaluminate cement[J]. Cement and Concrete Research, 2004, 34(4): 671-676.
[15] KIZILKANAT A B, KABAY N, AKYNC V, et al. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: an experimental study[J]. Construction and Building Materials, 2015, 100: 218-224.
[16] ALMERICH A, FENOLLOSA E, MARTIN P. Reinforced lime concrete with FRP: an alternative in the restoration of architectural heritage[J]. Applied Mechanics and Materials, 2016, 851: 751-756.
[17] 张勤, 巩苏苏, 赵永胜, 等. 多尺度纤维复合增强水泥基材料的力学性能[J]. 土木与环境工程学报, 2021, 43(2): 123-129.
ZHANG Qin, GONG Susu, ZHAO Yongsheng, et al. Mechanical properties of multi-scale fiber composite reinforced cement-based materials[J]. Journal of Civil and Environmental Engineering, 2021, 43(2): 123-129.(in Chinese)
[18] 吴昊宇, 侯云芬, 李地红. 玻璃纤维珠链增强水泥砂浆力学性能研究[J]. 新型建筑材料, 2018, 45(3): 4-8.
WU Haoyu, HOU Yunfen, LI Dihong. Research on mechanical properties of glass fiber bead chain reinforced cement mortar[J]. New Building Materials, 2018, 45(3): 4-8.(in Chinese)
[19] MEGEL M, KUMOSA L, ELY T, et al. Initiation of stress-corrosion cracking in unidirectional glass/polymer composite materials[J]. Composites Science and Technology, 2001, 61(2): 231-246.
[20] GB/T 15231—2008. 玻璃纤维增强水泥性能试验方法[S].
GB/T 15231—2008. Test methods for the properties of glass fibre reinforced cement[S].(in Chinese)
[21] 高丹盈, 陈刚, HADI M N S, 等. 钢筋与钢纤维混凝土的黏结-滑移性能及其关系模型[J]. 建筑结构学报, 2015, 36(7): 132-139.
GAO Danying, CHEN Gang, HADI M N S, et al. Bond-slip behavior and constitutive model between rebar and steel fibre reinforced concrete[J]. Journal of Building Structures, 2015, 36(7): 132-139.(in Chinese)
[22] 张亚芳, 郭中祥, 刘浩, 等. 钢纤维对双丝拉拔试件动态破裂性能的影响[J]. 深圳大学学报理工版, 2021, 38(2): 136-143.
ZHANG Yafang, GUO Zhongxiang, LIU Hao, et al. Influence of steel fiber on dynamic failure property of twin fibers pull-out specimens[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(2): 136-143.(in Chinese)
[23] 唐春安, 朱万成. 混凝土损伤与断裂: 数值试验[M]. 北京: 科学出版社, 2003.
TANG Chun’an, ZHU Wancheng. Concrete damage and fracture: numerical tests[M]. Beijing: Science Press, 2003.
[24] 罗素蓉, 林扬兴, 肖建庄. 钢-PVA混杂纤维高强再生骨料混凝土断裂性能[J]. 建筑结构学报, 2020, 41(12): 93-102.
LUO Surong, LIN Yangxing, XIAO Jianzhuang. Fracture behavior of high strength recycled aggregate concrete with steel-PVA hybrid fiber[J]. Journal of Building Structures, 2020, 41(12): 93-102.(in Chinese)
[25] CHENG Congmi, HONG Silei, ZHANG Yafang, et al. Effect of expanded polystyrene on the flexural behavior of lightweight glass fiber reinforced cement[J]. Construction and Building Materials, 2020, 265: 120328.
[26] 程从密, 张健, 甘伟, 等. 玻璃纤维增强水泥断裂能的试验研究[J]. 华南理工大学学报自然科学版, 2018, 46(11): 53-58,73.
CHENG Congmi, ZHANG Jian, GAN Wei, et al. Experimental study on the fracture energy of glass fiber reinforced cement[J]. Journal of South China University of Technology Natural Science, 2018, 46(11): 47-52,67.(in Chinese)

相似文献/References:

[1]张亚芳,陈江平.不同掺量玻璃纤维增强水泥细观数值研究[J].深圳大学学报理工版,2010,27(1):103.
 ZHANG Ya-fang and CHEN Jiang-ping.Numerical study on glass fiber reinforced cement with different incorporation rates[J].Journal of Shenzhen University Science and Engineering,2010,27(4):103.
[2]李正操,付晓刚,陈东钺,等.各向同性石墨结构与工艺条件的关系[J].深圳大学学报理工版,2010,27(2):137.
 LI Zheng-cao,FU Xiao-gang,CHEN Dong-yue,et al.The relationship of structure and processing condition of isotopic graphite[J].Journal of Shenzhen University Science and Engineering,2010,27(4):137.
[3]祝瑜,杨英姿,姚燕,等.SAP对高延性水泥基复合材料弯曲性能的影响[J].深圳大学学报理工版,2014,31(2):193.[doi:10.3724/SP.J.1249.2014.02193]
 Zhu Yu,Yang Yingzi,Yao Yan,et al.Effect of superabsorbent polymer particles on the flexural properties of engineered cementitious composites[J].Journal of Shenzhen University Science and Engineering,2014,31(4):193.[doi:10.3724/SP.J.1249.2014.02193]

备注/Memo

备注/Memo:
Received:2021-03-08;Accepted:2021-05-17;Online(CNKI):2021-06-11
Foundation:National Natural Science Foundation of China (51878190)
Corresponding author:Professor ZHANG Yafang.E-mail: zhangyafang2004@163.com
Citation:LU Juan,ZHANG Yafang,CHENG Congmi, et al.Effect of fiber content on bending performance of glass fiber reinforced cement slab[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(4): 380-386.(in Chinese)
基金项目:国家自然科学基金资助项目(51878190)
作者简介:卢娟(1992—),广州大学博士研究生.研究方向:纤维增强混凝土细观力学.E-mail:1223497368@163.com
引文:卢娟,张亚芳,程从密,等.纤维掺量对玻璃纤维增强水泥板弯曲性能的影响[J]. 深圳大学学报理工版,2021,38(4):380-386.
更新日期/Last Update: 2021-07-30