[1]徐金辉,许晨霄,冯青松,等.基于惯性基准法的短波不平顺影响因素研究[J].深圳大学学报理工版,2021,38(4):347-357.[doi:10.3724/SP.J.1249.2021.04347]
 XU Jinhui,XU Chenxiao,FENG Qingsong,et al.Influence factors of short-wave irregularity based on inertial reference method[J].Journal of Shenzhen University Science and Engineering,2021,38(4):347-357.[doi:10.3724/SP.J.1249.2021.04347]
点击复制

基于惯性基准法的短波不平顺影响因素研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第4期
页码:
347-357
栏目:
交通物流
出版日期:
2021-07-07

文章信息/Info

Title:
Influence factors of short-wave irregularity based on inertial reference method
文章编号:
202104003
作者:
徐金辉1许晨霄1冯青松1王浩2孙魁1
1)华东交通大学铁路环境振动与噪声教育部工程研究中心,江西南昌 330013
2)广州地铁集团有限公司运营事业总部,广东广州 510310
Author(s):
XU Jinhui1 XU Chenxiao1 FENG Qingsong1 WANG Hao2 and SUN Kui1
1) Engineering Research Center of Railway Environment Vibration and Noise of Ministry of Education, East China Jiaotong University, Nanchang 330013, Jiangxi Province, P.R.China
2) Operation Headquarters, Guangzhou Metro Group Co. Ltd., Guangzhou 510310, Guangdong Province, P.R.China
关键词:
铁道工程惯性基准法短波不平顺车辆-轨道耦合动力学柔性轨道轨道谱
Keywords:
railway engineering inertial reference method short wave irregularity vehicle-track coupling dynamics flexible track track spectrum
分类号:
U213.2
DOI:
10.3724/SP.J.1249.2021.04347
文献标志码:
A
摘要:
针对轨面短波不平顺敏感因素问题,利用多体动力学软件Universal Mechanical建立车辆-轨道耦合动力学模型,基于惯性基准法原理仿真检测轨面短波高低不平顺,分析轨道结构及其关键参数对轨面短波高低不平顺的影响.分析结果表明,柔性轨道估算不平顺大于无质量轨道,最大幅值差为0.076 mm,轨道结构振动对轨面短波高低不平顺具有一定影响,主要影响波长范围为0.15~0.46 m;扣件系统垂向刚度对短波不平顺的影响较大,幅值变化明显,波长0.15~0.33 m内轨道谱随扣件刚度的增大显著增大;短波不平顺随扣件阻尼、路基支承刚度及路基支承阻尼的增大而减小,主要影响波长范围分别为0.27~0.46、0.15~0.33及0.28~0.40 m;短波不平顺随轨枕间距的增大而略增大.研究成果可为短波不平顺的维护与控制提供理论依据,为列车运营安全提供保障.
Abstract:
Aiming at the sensitive factors of short wave irregularity on rail surface, the vehicle-track coupling dynamics model is established by using multi-body dynamics software Universal Mechanical. Based on the principle of inertial reference method, the short wave height irregularity of rail surface is simulated and detected. The influence of the track structure and its key parameters on the short wave height irregularity of rail surface is analyzed. The estimated irregularity of flexible track is greater than that of massless track, and the maximum amplitude difference is 0.076 mm; especially, the track spectrum of flexible track within the wavelength range of 0.15-0.46 m is significantly greater than that of massless track, which indicates that the vibration of the track structure has a certain impact on the short wave height irregularity of rail surface, and mainly affects the wavelength of 0.15-0.46 m. The vertical stiffness of the fastener system has a great influence on the short wave irregularity, and its amplitude changes obviously. The track spectrum in the wavelength range of 0.15-0.33 m increases significantly with the increase of fastener stiffness. The short wave irregularity decreases with the increases of fastener damping, subgrade support stiffness and subgrade support damping. The main wavelength ranges affected are 0.27-0.46, 0.15-0.33 and 0.28-0.40 m, respectively. The short wave irregularity increases slightly with the increase of sleeper spacing. The research results provide theoretical basis for the maintenance and control of short wave irregularity and guarantee the safety of train operation.

参考文献/References:

[1] 李浩然.轨道短波不平顺检测技术研究[D].北京:中国铁道科学研究院,2019.
LI Haoran. Research on short-wavelength track irregularity detection technology[D]. Beijing:China Academy of Railway Sciences,2019.(in Chinese)
[2] 魏世斌,刘伶萍,刘维桢,等.提速线路轨道长波不平顺检测技术[J].中国铁道科学,2010,31(2):141-144.
WEI Shibin,LIU Lingping,LIU Weizhen,et al. Technology for the measurement of long-wavelength track irregularity of speed-up railway[J]. China Railway Science,2010,31(2):141-144.(in Chinese)
[3] NIELSEN J C O,EKBERG A. Acceptance criterion for rail roughness level spectrum based on assessment of rolling contact fatigue and rolling noise[J]. Wear,2011,271(1):319-327.
[4] 李再帏,雷晓燕,高亮.轨道短波不平顺数值模拟新方法[J].交通运输工程学报,2016,16(1):37-45.
LI Zaiwei,LEI Xiaoyan,GAO Liang. New numerical simulation method of shortwave track irregularity[J]. Journal of Traffic and Transportation Engineering,2016,16(1):37-45.(in Chinese)
[5] 刘秀波,吴卫新.钢轨焊接接头短波不平顺功率谱分析[J].中国铁道科学,2000(2):28-36.
LIU Xiubo,WU Weixin. PSD analysis of shortwave irregularity on welded joints[J]. China Railway Science,2000(2):28-36.(in Chinese)
[6] 朱志辉,王力东,杨乐,等.轨道不平顺短波分量对列车-简支梁桥耦合振动的影响[J].湖南大学学报自然科学版,2016,43(1):53-60.
ZHU Zhihui,WANG Lidong,YANG Le,et al. Effect of short-wavelength components in rail irregularity on the coupled dynamic responses of train and simple-supported bridge[J]. Journal of Hunan University Natural Sciences,2016,43(1):53-60.(in Chinese)
[7] 徐庆元.短波随机不平顺对列车-板式无砟轨道-桥梁系统动力特性影响[J].土木工程学报,2011,44(10):132-137.
XU Qingyuan. Influence of short-wave random irregularity on the dynamic characteristics of train-slab track-bridge system[J]. China Civil Engineering Journal,2011,44(10):132-137.(in Chinese)
[8] 徐庆元,曹扬风,周小林.短波随机不平顺对列车-板式无砟轨道-路基系统振动特性的影响[J].中南大学学报自然科学版,2011,42(4):1105-1110.
XU Qingyuan,CAO Yangfeng,ZHOU Xiaolin. Influence of short-wave random irregularity on vibration characteristic of train-slab track-subgrade system[J]. Journal of Central South University Science and Technology,2011,42(4):1105-1110.(in Chinese)
[9] 周宇.城市轨道交通轨面短波不平顺水平谱分析[J].城市轨道交通研究,2014,17(4):18-22, 32.
ZHOU Yu. Analysis of rail surface roughness level spectrum for urban rail transit[J]. Urban Mass Transit,2014,17(4):18-22, 32.(in Chinese)
[10] 牛留斌,李谷,刘金朝,等.轮轨力在轨道短波不平顺检测中的应用[J].铁道建筑,2019,59(8):133-139.
NIU Liubin,LI Gu,LIU Jinzhao,et al. Application of the wheel-rail force in track short wave irregularity detection[J]. Railway Engineering,2019,59(8):133-139.(in Chinese)
[11] 田国英,高建敏,赵春发.铁路轨道不平顺谱研究进展[J].铁道工程学报,2016,33(9):35-40, 81.
TIAN Guoying,GAO Jianmin,ZHAO Chunfa. Progress in the research on the railway track irregularity power spectral density[J]. Journal of Railway Engineering Society,2016,33(9):35-40, 81.(in Chinese)
[12] 郭宝儒.基于惯性基准法的大跨度桥上轨道高低不平顺估算[D].成都:西南交通大学,2016.
GUO Baoru. Estimation of track height irregularities on long-span bridges based on inertial reference method[D]. Chengdu:Southwest Jiaotong University,2016.(in Chinese)
[13] 熊仕勇.轨道不平顺检测系统中关键技术研究[D].成都:西南交通大学,2018.
XIONG Shiyong. Research on key technology in track irregularity detection system[D]. Chengdu:Southwest Jiaotong University,2018.(in Chinese)
[14] 李帅,易杨明,王源,等.基于惯性基准法的高速铁路纵断面线形平顺性研究[J].铁道科学与工程学报,2018,15(8):1901-1910.
LI Shuai,YI Yangming,WANG Yuan,et al. Study on profile line regularity based on the inertial reference method in high-speed railway[J]. Journal of Railway Science and Engineering,2018,15(8):1901-1910.(in Chinese)

备注/Memo

备注/Memo:
Received:2020-01-16;Revised:2020-08-28;Accepted:2020-11-25;Online(CNKI):2021-06-22
Foundation:National Natural Science Foundation of China (51808221); Natural Science Foundation of Jiangxi Province (20181BAB216029); Training Program for Academic and Technical Leaders of Major Disciplines of Jiangxi Province(20194BCJ22008); Key R & D Program of Jiangxi Province(20192BBE50008)
Corresponding author:Professor FENG Qingsong.E-mail: fqshdjtdx@aliyun.com
Citation:XU Jinhui,XU Chenxiao,FENG Qingsong,et al.Influence factors of short-wave irregularity based on inertial reference method[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(4): 347-357.(in Chinese)
基金项目:国家自然科学基金资助项目(51808221);江西省自然科学基金资助项目(20181BAB216029);江西省主要学科学术和技术带头人培养计划资助项目(20194BCJ22008);江西省重点研发计划资助项目(20192BBE50008)
作者简介:徐金辉(1987—),华东交通大学讲师、博士.研究方向:轨道不平顺、轨道动力学.E-mail:xjh1021@126.com
引文:徐金辉,许晨霄,冯青松,等.基于惯性基准法的短波不平顺影响因素研究[J]. 深圳大学学报理工版,2021,38(4):347-357.
更新日期/Last Update: 2021-07-30