XU Hao,QIAO Lijun,et al.The realization of tunable infrared laser using the doped silicon waveguide[J].Journal of Shenzhen University Science and Engineering,2021,38(3):258-263.[doi:10.3724/SP.J.1249.2021.03258]





The realization of tunable infrared laser using the doped silicon waveguide
徐浩1 2乔丽君1 2张明江1 2张建忠1 2王涛1 2高少华1 2
1)太原理工大学物理与光电工程学院,山西太原 030024
XU Hao1 2 QIAO Lijun1 2 ZHANG Mingjiang1 2 ZHANG Jianzhong1 2 WANG Tao1 2 and GAO Shaohua1 2
1) College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R.China
2) Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R.China
nonlinear optics silicon waveguide doping infrared tuning four-wave mixing second-order nonlinearity
针对目前红外波段波长转换存在的损耗大、工艺复杂,以及难以实现波长调谐等缺陷,提出掺杂硅波导结构实现可调谐红外激光输出. 通过氧化锌粒子的掺杂破坏硅材料的对称性,减少其有效折射率,增强硅波导内部的非线性效应,实现了中红外波长输出,波长转换范围达到1.55~2.85 μm. 进一步研究发现,改变粒子掺杂密度可实现中红外激光波长可调谐输出,调谐范围可达225 nm. 掺杂波导具有体积小、结构稳定等优势,该掺杂手段为实现集成波长调谐器件提供了新方法.
In view of the current situation of wavelength conversion in infrared wave band such as high loss of energy, complex technology, and the difficulty in wavelength tuning, we design a doped silicon waveguide. By doping zinc oxide particles in silicon to destroy the symmetry of silicon material, the effective refractive index is reduced, and the nonlinear effect inside the silicon waveguide is enhanced. The results show that the mid-infrared laser can be realized with the wavelength conversion range from 1.55 μm to 2.85 μm. Further researches show that the wavelength of the mid-infrared laser can be tunable by changing the density of the doped particles, and the tuning range can reach 225 nm. The doped silicon waveguide, with the advantage of small size doping particles and stable structure, can provide a new method for the research of integrated wavelength tuning devices.


[1] CHENG Yujun , YUAN Jinhui, MEI Chao, et al. Self-similar picosecond pulse compression for supercontinuum generation at mid-infrared wavelength in silicon strip waveguides[J]. Optics Communication, 2018, 454: 124380.
[2] ROELKENS G, DAVE U D, GASSENQ A, et al. Silicon-based photonic integration beyond the telecommunication wavelength range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 8201511.
[3] FATHPOUR S. Heterogeneous nonlinear integrated photonics[J]. IEEE Journal of Quantum Electronics, 2018, 54(6): 6300716.
[4] SANJA Z, JUNG S P, SLAVEN M, et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source[J]. Nature Photonics, 2010, 4: 561-564.
[5] CUI Yulong , HUANG Wei, LI Zhixian, et al. High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering[J]. Optics Express, 2019, 27(21): 30396-30404.
[6] LACAVA C, ETTABIB M A, BUCIO T D, et al. Intermodal Bragg-scattering four wave mixing in silicon waveguides[J]. Journal of Lightwave Technology, 2019, 37(7): 1680-1685.
[7] ALESSIA P, YONGWOO P, JOSE A, et al. Parametric gain and wavelength conversion via third order nonlinear optics a CMOS compatible waveguide[J]. Optics Express, 2010, 18(8): 7634-7641.
[8] LIU Yingwen, WU Chao, QIANG Xiaogang, et al. Evanescent-wave coupling phase-matching for ultrawidely tunable frequency conversion in silicon-waveguide chips[J]. Optics Express, 2019, 27(20): 28866-28878.
[9] TIMURDOGAN E, POULTON C V, WATTS M R. Electric field-induced second order nonlinear optical effects in silicon waveguides[J]. Nature Photonics, 2017, 11: 200-206.
[10] RAO A, FATHPOUR S. Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 8200912.
[11] PUCKETT M W, SALLEY J S T, ABASHIN M, et al. Tensor of the second-order nonlinear susceptibility in asymmetrically strained silicon waveguides analysis and experimental validation[J]. Optics Letters, 2014, 39(6): 1693-1696.
[12] MASSIMO C, JOERG S. Second order optical nonlinearity in silicon by symmetry breaking[J]. Applied Physics Reviews, 2016, 3(1): 011104.
[13] LIN Q, JOHNSON T J, PERAHIA R, et al. A proposal for highly tunable optical parametric oscillation in silicon micro-resonators[J]. Optics Express, 2008, 16(14): 10596-10610.


 ZHENG Guo-liang,OUYANG Zheng-biao,and XU Shi-xiang.The effect of absorption on the quasi-phase-matched linear electro-optic effect[J].Journal of Shenzhen University Science and Engineering,2010,27(3):152.
 XIA Lin-zhong,SU Hong,GUAN Ming-xiang,et al.Temperature tunable optical parametric oscillator based on MgO-doped PPLN[J].Journal of Shenzhen University Science and Engineering,2011,28(3):405.
 Ni Jielei and Cheng Ya.Several new phenomena in femtosecond laser filamentation[J].Journal of Shenzhen University Science and Engineering,2014,31(3):1.[doi:10.3724/SP.J.1249.2014.01001]
 QU Jun-le,CHEN Dan-ni,YANG Jian-jun,et al. Second harmonic generation imaging and its applications in biomedicine[J].Journal of Shenzhen University Science and Engineering,2006,23(3):1.
 HAO Zhong-hua,LIU Jin-song.Solitary Evolution of Gaussian Beam in Photovoltaic-photorefractive Crystal[J].Journal of Shenzhen University Science and Engineering,2001,18(3):15.
 LONG Jing-hua,RUAN Shuang-chen,JU Yang-feng and Zhu Qin.New Techniques for Measuring the Ultrashort Optical Pulses[J].Journal of Shenzhen University Science and Engineering,2001,18(3):46.
 Li Yunting,Zhang Mingjiang,et al.High precision measurement for Raman distributed temperature sensor by dynamic noise difference algorithm[J].Journal of Shenzhen University Science and Engineering,2017,34(3):20.[doi:10.3724/SP.J.1249.2017.01020]
 Liu Wei,Liu Shuanglong,Chen Danni,et al.Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy[J].Journal of Shenzhen University Science and Engineering,2017,34(3):272.[doi:10.3724/SP.J.1249.2017.03272]
 YANG Shuaijun,ZHANG Jianzhong,LIU Yi,et al.Design of precise temperature controller and current driver for chaotic laser[J].Journal of Shenzhen University Science and Engineering,2018,35(3):495.[doi:10.3724/SP.J.1249.2018.05495]
 LIU Qiang,WANG Qiong,et al.Efficient terahertz wave generation based on hybrid micro-cavity[J].Journal of Shenzhen University Science and Engineering,2019,36(3):140.[doi:10.3724/SP.J.1249.2019.02140]


Foundation:National Natural Science Foundation of China (61527819); Science Foundation for Youths of Shanxi Province (201801D221187)
Corresponding author:Professor ZHANG Mingjiang.E-mail: zhangmingjiang@tyut.edu.cn
Citation:XU Hao,QIAO Lijun,ZHANG Mingjiang,et al.The realization of tunable infrared laser using the doped silicon waveguide[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(3): 258-263.(in Chinese)
基金项目:国家自然科学基金资助项目 (61527819);山西省面上青年基金资助项目(201801D221187)
作者简介:徐浩 (1995—),太原理工大学硕士研究生.研究方向:硅基集成波导器件.E-mail:xuhao616376003@163.com
引文:徐浩,乔丽君,张明江,等.掺杂硅波导实现可调谐红外激光输出[J]. 深圳大学学报理工版,2021,38(3):258-263.
更新日期/Last Update: 2021-05-30