参考文献/References:
[1] GERBER H, SHIU E. On the time value of ruin[J]. North America Actuarial Journal, 1998, 2(1): 48-72.
[2] LIN X S, PAVLOVA K P. The compound Poisson risk model with a threshold dividend strategy[J]. Insurance: Mathematics and Economics, 2006, 38(1): 57-80.
[3] 赵金娥,李明. 一类稀疏风险模型的Gerber-Shiu函数和最优红利策略[J]. 应用概率统计,2014,30(4):439-448.
ZHAO Jin’e, LI Ming. On the Gerber-Shiu function and optimal dividend strategy for a thinning risk model[J]. Journal of Applied Probability and Statistics, 2014, 30(4): 439-448.(in Chinese)
[4] 陈洁,吕玉华. 带分红的稀疏风险模型的期望折现罚金函数[J]. 山东大学学报理学版, 2015, 50(9): 78-83.
CHEN Jie, LV Yuhua. Discounted penalty function for a thinning risk model with dividend[J]. Journal of Shandong University Natural Science, 2015, 50(9): 78-83.(in Chinese)
[5] 韩树新, 张兴宽. 两类带分红稀疏风险模型的期望折现罚金函数[J]. 南开大学学报自然科学版, 2016, 49(5): 92-101.
HAN Shuxin, ZHANG Xingkuan. The expected discounted penalty function of thing risk models with Barrier dividend[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2016, 49(5): 92-101.(in Chinese)
[6] 毛泽春,刘锦萼. 一类索赔次数的回归模型及其在风险分级中的应用[J]. 应用概率统计,2004,20(4): 359-367.
MAO Zechun, LIU Jin’e. A regression model based on double parameters Poisson distribution and its applications to risk classification[J]. Chinese Journal of Applied Probability Statistics, 2004,20(4): 359-367.(in Chinese)
[7] 贺丽娟,王成勇,张锴. 变保费率复合Poisson-Geometric 过程风险模型的Gerber-Shiu折现惩罚函数[J].工程数学学报,2016,33(2): 121-130.
HE Lijuan, WANG Chengyong, ZHANG Kai. Gerber-Shiu discounted penalty function for compound Poisson-Geometric risk model with variable premium rate[J]. Chinese Journal of Engineering Mathematics ,2016,33(2): 121-130.(in Chinese)
[8] 乔克林, 韩建勤. 改进后的复合Poisson-Geometric风险模型Gerber-Shiu折现惩罚函数[J]. 系统科学与数学, 2016, 36(10): 1743-1752.
QIAO Kelin, HAN Jianqin. The Gerber-Shiu discounted penalty function of an improved Poisson-Geometric risk model[J]. Journal of System Science and Mathematics Science, 2016, 36(10): 1743-1752.(in Chinese)
[9] YANG Long, DENG Guohe, YANG Li, et al. A perturbed risk model with dependence based on a generalized Farlie-Gumber-Morgenrstern copula[J]. Chinese Journal of Applied Probability and Statistics, 2019, 35(4): 373-396.(in Chinese)
[10] 苏必超, 李婧超. 经典风险模型中破产变量的联合分布[J]. 深圳大学学报理工版,2019,36(4):419-423.
SU Bichao, LI Jingchao. The joint distribution of ruin related quantities in the classical risk model[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(10): 419-423.(in Chinese)
[11] 孙宗岐,刘宣会,陈思源,等. 基于注资-有界分红的随机微分投资-再保博弈[J]. 深圳大学学报理工版,2017,33(4):364-371.
SUN Zongqi, LIU Xuanhui, CHEN Siyuan, et al. Stochastic differential investment-reinsurance games with capital injection-barrier dividend[J]. Journal of Shenzhen University Science and Engineering, 2017, 33(4): 364-371.(in Chinese)
[12] 孙宗岐,陈志平. 复合Poisson-Geometric风险下保险公司的最优投资-再保-混合分红策略[J]. 工程数学学报,2016,33(5):463-479.
SUN Zongqi, CHEN Zhiping. Optimal investment-reinsurance-hybrid dividend strategies for insurance company under compound Poisson-Geometric risk process[J]. Journal of Engineering Mathematics, 2016, 33(5): 463-479.(in Chinese)
[13] 汤珂. 随机过程与金融衍生品[M]. 北京:中国人民大学出版社, 2014.
TANG Ke. The stochastic process and financial derivatives[M]. Beijing: Renmin University of China Press, 2014.(in Chinese)
相似文献/References:
[1]马江山,李昱莹.基于卷积的自助银行选址分析[J].深圳大学学报理工版,2018,35(1):92.[doi:10.3724/SP.J.1249.2018.01092]
MA Jiangshan and LI Yuying.Self-help bank location analysis based on convolution[J].Journal of Shenzhen University Science and Engineering,2018,35(2):92.[doi:10.3724/SP.J.1249.2018.01092]
[2]何基好,向淑文,贾文生,等.基于有限理性的信息集广义多目标博弈[J].深圳大学学报理工版,2018,35(1):105.[doi:10.3724/SP.J.1249.2018.01105]
HE Jihao,XIANG Shuwen,et al.Information set generalized multi-objective games based on bounded rationality[J].Journal of Shenzhen University Science and Engineering,2018,35(2):105.[doi:10.3724/SP.J.1249.2018.01105]
[3]孙宗岐,刘宣会,陈思源,等.基于注资-有界分红的随机微分投资-再保博弈[J].深圳大学学报理工版,2017,34(4):364.[doi:10.3724/SP.J.1249.2017.04364]
Sun Zongqi,Liu Xuanhui,Chen Siyuan,et al.Stochastic differential investment-reinsurance games with capital injection-barrier dividend[J].Journal of Shenzhen University Science and Engineering,2017,34(2):364.[doi:10.3724/SP.J.1249.2017.04364]