[1]邵翌鑫,等.植入假体应力遮蔽效应关键技术研究[J].深圳大学学报理工版,2021,38(2):201-207.[doi:10.3724/SP.J.1249.2021.02201]
 SHAO Yixin,GUAN Tianmin,et al.Key techniques for stress shielding effect of prosthesis implantation[J].Journal of Shenzhen University Science and Engineering,2021,38(2):201-207.[doi:10.3724/SP.J.1249.2021.02201]
点击复制

植入假体应力遮蔽效应关键技术研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第2期
页码:
201-207
栏目:
生物工程
出版日期:
2021-03-12

文章信息/Info

Title:
Key techniques for stress shielding effect of prosthesis implantation
文章编号:
202102013
作者:
邵翌鑫1 2关天民1朱晔1陈向禹1
1)大连交通大学机械工程学院,辽宁大连 116028
2)北华大学机械工程学院,吉林吉林 132021
Author(s):
SHAO Yixin1 2 GUAN Tianmin1 ZHU Ye1 and CHEN Xiangyu1
1) School of Mechanical Engineering, University of Dalian Jiaotong, Dalian 116028, Liaoning Province, P.R.China
2) School of Mechanical Engineering, University of Beihua, Jilin 132021, Jilin Province, P.R.China
关键词:
生物工程应用应力遮挡3D打印植入体多孔结构植入假体孔隙率骨缺损修复
Keywords:
bioengineering applications stress shielding 3D printed prosthesis porous structure of prosthesis implantation porosity bone defect repairing
分类号:
Q819
DOI:
10.3724/SP.J.1249.2021.02201
文献标志码:
A
摘要:
应力遮挡效应是影响假体修复手术效果的主要因素,由于目前3D打印钛合金植入假体与人体骨骼之间本构关系的差异会导致骨缺损修复手术产生应力遮挡现象.针对这个问题,分析单元组织结构与模型弹性模量之间的映射关系,建立了符合人体骨骼本构模型的多孔结构植入假体结构模型,并利用优化的打印参数打印钛合金假体进行验证实验.研究发现,当线能量密度为269.1 J/mm3时,3D打印钛合金假体的弹性模量可降低至31.51 GPa;采用diamond结构且孔隙率在70%~80%的多孔结构可与人体皮质骨的模量一致,并建立二者之间对应关系.通过建立单元组织结构与人体皮质骨模量的映射关系规律,准确反映了假体值入的模量随3D打印多孔结构单元尺寸增大而增大、随孔隙率增大而减小的规律,为消除应力遮挡现象的研究提供理论支撑.
Abstract:
Stress shielding effect is the main factor which affects the reconstructive surgery effect of prosthesis. At present, the difference of constitutive relationship between 3D printed titanium alloy prosthesis implant and human bone leads to the stress shielding phenomenon in bone defect repairing surgery. To solve this problem, this paper establishes a porous structure model of prosthesis implantation conforming to the constitutive model of human bone through analysis on the mapping relationship between unit tissue structure and elastic modulus of model. And titanium alloy is printed with optimized print parameters for 3D printer to testify the experiment. The study finds that the elastic modulus of 3D printed titanium alloy could be reduced to 31.51 GPa when the linear energy density is 269.1 J/mm3; the porous structure with diamond structure and porosity of 70%-80% could be consistent with the modulus of human cortical bone and the corresponding relationship between them could be established. This paper builds the law of mapping relationship between unit tissue structure and modulus of human cortical bone, which accurately reflects the rule that the modulus of prosthesis implant increases with the increase of the size of 3D printing porous structure unit and decreases with the increase of porosity. It provides theoretical support for research of eliminating stress shielding phenomenon.

参考文献/References:

[1] BAUER T W, MUSCHLER G F. Bone graft materials: an overview of the basic science[J].Clinical Orthopaedics and Related Research,2000(371):10-27.
[2] SILBER J S, ANDERSON D G, DAFFNER S D,et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion[J].Spine,2003,28(2):134-139.
[3] 孔圳.Orthofix重建外固定架与带血管腓骨移植术治疗胫骨大段骨缺损的临床研究[D].湛江:广东医学院,2015.
KONG Zhen. Clinical contrast analysis of the treatment of tibia long bone defects with Ortbofix Limb Reconstruction System and vascularized fibula graft[D]. Zhanjiang: Guangdong Medical College,2015.(in Chinese)
[4] 金志超,蔡群斌,曾志奎,等.诱导膜技术治疗大段骨缺损研究进展[J].中国骨伤,2018, 31(5):488-492.
JIN Zhichao, CAI Qunbin, ZENG Zhikui,et al.Research progress on induced membrane technique for the treatment of segmental bone defect[J].China Journal of Orthopaedics and Traumatology,2018,31(5):488-492.(in Chinese)
[5] GIANNATSIS J, DEDOUSSIS V. Additive fabrication technologies applied to medicine and health care: a review[J]. International Journal of Advanced Manufacturing Technology,2009,40(1/2):116-127.
[6] PEI Xuan,ZHANG Boqing,FAN Yujiang,et al. Bionic mechanical design of titanium bone tissue implants and 3D printing manufacture[J]. Materials Letters, 2017, 208:133-137.
[7] 朱康平,祝建雯,曲恒磊.国外生物医用钛合金的发展现状[J].稀有金属材料与工程,2012, 41(11):2058-2063.
ZHU Kangping, ZHU Jianwen, QU Henglei. Development and application of biomedical Ti alloys abroad[J]. Rare Metal Materials and Engineering, 2012, 41(11): 2058-2063.(in Chinese)
[8] 李苗苗,罗炯,张庭然,等.骨质代谢与运动训练:骨重塑与骨细胞增殖[J].中国组织工程研究,2019, 23(34):5544-5549.
LI Miaomiao, LUO Jiong, ZHANG Tingran, et al. Bone metabolism and exercise training: bone remodeling and osteoblast proliferation[J].Chinese Journal of Tissue Engineering Research,2019,23(34):5544-5549.(in Chinese)
[9] FROST H M.A 2003 update of bone physiology and Wolff’s law for clinicians[J].The Angle Orthodontist,2004, 74(1):3-15.
[10] FRITTON S P, MCLEOD K J, RUBIN C T. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains[J]. Journal of Biomechanics, 2000, 33(3):317-325.
[11] 吕金建,贾长治,杨建春.激光能量密度对选区激光熔化成型质量的影响[J].热加工工艺,2018, 47(20):156-159.
L Jinjian, JIA Changzhi, YANG Jianchun.Effect of laser energy density on forming quality of selective laser melting[J].Hot Working Technology,2018,47(20): 156-159.(in Chinese)
[12] HAN H N , KIM H S , OH K H , et al. Elastoplastic finite element analysis for porous metals[J]. Powder Metallurgy, 2013, 37(2):140-146.
[13] IK-HYUN O, NOMURA N, MASAHASHI N, et al. Mechanical properties of porous Titanium compacts prepared by powder sintering[J].Scripta Materialia,2003, 49(12):1197-1202.
[14] PALMQUIST A, SNIS A, EMANUELSSON L, et al. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous Titanium alloy: experimental studies in sheep[J].Journal of Biomaterials Applications,2013,27(8):1003-1016.
[15] YANG Jun, CAI Hong, L Jia, et al.In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting[J].Spine,2014,39(8):E486-E492.
[16] XU Nanfang, WEI Feng, LIU Xiaoguang, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma[J].Spine,2016,41(1):E50-E54.
[17] HOLLISTER S J.Scaffold design and manufacturing: from concept to clinic[J].Advanced Materials,2009,21(32/33):3330-3342.
[18] 刘畅,王辰宇,刘贺,等.3D打印Ti6Al4V钛合金支架的 力学性能及生物相容性[J].中国有色金属学报,2018, 28(4):758-765.
LIU Chang, WANG Chenyu, LIU He,et al.Mechanical properties and biocompatibility of 3D printing Ti6Al4V titanium alloy scaffolds[J].The Chinese Journal of Nonferrous Metals,2018,28(4):758-765.(in Chinese)
[19] KARAGEORGIOU V, KAPLAN D . Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27):5474-5491.
[20] YANG Bao, ZHANG Mu, LIU Yi, et al. High strength, low modulus and biocompatible porous Ti-Mo-Fe alloys[J].Journal of Porous Materials,2014,21(6):913-919.
[21] LI Limei, ZUO Yi, ZOU Qin, et al. Hierarchical structure and mechanical improvement of an n-HA/GCO-PU composite scaffold for bone regeneration[J].ACS Applied Materials & Interfaces,2015,7(40):22618-22629.
[22] ARABNEJAD S, JOHNSTON B, TANZER M,et al.Fully porous 3D printed Titanium femoral stem to reduce stress-shielding following total hip arthroplasty[J].Journal of Orthopaedic Research,2017,35(8):1774-1783.

备注/Memo

备注/Memo:
Received:2020-06-03;Accepted:2020-08-17
Foundation:Doctor Startup Project of Liaoning Province Education Administration(JDL2020028)
Corresponding author:Lecturer ZHU Ye. E-mail: zhuye198727@163.com
Citation:SHAO Yixin, GUAN Tianmin, ZHU Ye, et al. Key techniques for stress shielding effect of prosthesis implantation[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(2): 201-207.(in Chinese)
基金项目:辽宁省教育厅博士启动项目(JDL2020028)
作者简介:邵翌鑫(1988—),大连交通大学博士研究生、北华大学讲师. 研究方向:人机工程与医疗康复器械设计理论与制造技术. E-mail: 187157031@qq.com
引文:邵翌鑫,关天民,朱晔,等.植入假体应力遮蔽效应关键技术研究[J]. 深圳大学学报理工版,2021,38(2):201-207.
更新日期/Last Update: 2021-03-30