[1]牛冬瑜,谢希望,杨政险,等.WFO-CR改性沥青的分子结构变化与抗老化性能[J].深圳大学学报理工版,2020,37(6):589-596.[doi:10.3724/SP.J.1249.2020.06589]
 NIU Dongyu,XIE Xiwang,et al.Molecular structure change and anti-aging performance of WFO-CR composite modified asphalts[J].Journal of Shenzhen University Science and Engineering,2020,37(6):589-596.[doi:10.3724/SP.J.1249.2020.06589]
点击复制

WFO-CR改性沥青的分子结构变化与抗老化性能()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第6期
页码:
589-596
栏目:
土木建筑工程
出版日期:
2020-11-09

文章信息/Info

Title:
Molecular structure change and anti-aging performance of WFO-CR composite modified asphalts
文章编号:
202006006
作者:
牛冬瑜12谢希望2杨政险3张蔚4盛燕萍2熊锐2
1) 公路建设与养护技术、材料及装备交通运输行业研发中心(甘肃路桥建设集团有限公司),甘肃兰州 730030
2) 长安大学材料科学与工程学院,陕西西安 710061
3)福州大学土木工程学院,福建福州 350116
4)福建省建筑科学研究院有限责任公司,福建福州 350108
Author(s):
NIU Dongyu1 2 XIE Xiwang2 YANG Zhengxian3 ZHANG Wei4 SHENG Yanping2 and XIONG Rui2
1) Research and Development Center of Transport Industry of Technologies, Materials and Equipments of Highway Construction and Maintenance, Gansu Road & Bridge Construction Group, Lanzhou 730030, Gansu Province, P.R.China
2) School of Materials Science and Engineering, Chang’an University, Xi’an 710061, Shaanxi Province, P.R.China
3) College of Civil Engineering, Fuzhou University, Fuzhou 350116, Fujian Province, P.R.China
4) Fujian Academy of Building Research Co. Ltd., Fuzhou 350108, Fujian Province, P.R.China
关键词:
道路工程改性沥青短期老化煎炸废油废旧橡胶粉傅里叶红外光谱分子结构
Keywords:
road engineering modified asphalt short-term aging waste frying oil crumb rubber Fourier transform infrared spectroscopy molecular structures
分类号:
U414
DOI:
10.3724/SP.J.1249.2020.06589
文献标志码:
A
摘要:
为充分利用固、液废弃资源,改善沥青高低温性能缺陷,将复配煎炸废油(waste frying oil, WFO)与废胎橡胶粉(crumb rubber, CR)用于制备改性沥青,以开发一种可持续路面材料. 采用常规沥青试验、短期老化试验和傅里叶红外光谱试验,分析短期老化后不同质量分数WFO-CR复合改性沥青的性能指标及化学分子结构的变化规律. 结果表明:短期老化后,不同质量分数WFO-CR复合改性沥青的残留针入度比、软化点增值和残留延度比均优于基质沥青,抗老化性能改善明显. 傅里叶红外光谱试验结果表明,WFO-CR复合改性沥青中代表烯基或苯环CC键的814 cm-1和720 cm-1处的吸收峰峰值明显增大;不同质量分数WFO-CR复合沥青的羰基吸收峰和亚砜基吸收峰均有增强. 由碳基指数和亚砜基指数定量分析可知,当WFO与CR的质量分数分别为5.0%和20.0%时,碳基指数和亚砜基指数最低,相比基质沥青分别降低了36.02%和32.04%,对沥青抗老化性能的改善效果最好.
Abstract:
In order to use the solid and liquid waste resources to improve performances of base asphalt, waste frying oil (WFO) and crumb rubber (CR) are used to modify the asphalt to obtain the sustainable pavement material. The molecular structures and the performances of the modified asphalts with different amounts of WFO and CR are analyzed by conventional asphalt methods, short-term aging test and Fourier transform infrared spectroscopy (FT-IR). The results indicate that the retained penetration ratio (RPR), the softening point increment (SPI) and retained ductility ratio (RDR) indexes of modified asphalts with different amounts of WFO-CR composite are better than those of the base asphalt after short-term aging test. WFO and CR can improve anti-aging performance. Moreover, FT-IR results show that the absorption peaks at 814 cm-1 and 720 cm-1, which represent the alkenyl or benzene ring CC in WFO-CR composite modified asphalt after short-term aging, increase obviously. Both the carbonyl absorption peak and the sulfoxide absorption peak are improved for modified asphalts with different amounts of WFO-CR composite. The quantitative analysis shows that the carbonyl and sulfoxide indices of the modified asphalt reach the lowest values with 5.0% WFO and 20.0% CR, which are 36.02% and 32.04% lower than those of the base asphalt, respectively.

参考文献/References:

[1] 姚志龙, 闵恩泽. 废弃食用油脂的危害与资源化利用[J]. 天然气工业, 2010, 30(5): 123-128.
YAO Zhilong, MIN Enze. Harm and resource utilization of waste edible oil[J]. Natural Gas Industry, 2010, 30(5): 123-128.(in Chinese)
[2] ASLI H, AHMADINIA E, ZARGAR M, et al. Investigation on physical properties of waste cooking oil-rejuvenated bitumen binder[J]. Construction and Building Materials, 2012, 37: 398-405.
[3] CHEN Meizhu, LENG Binbin, WU Shaopeng, et al. Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders[J]. Construction and Building Materials, 2014, 66: 286-298.
[4] ZARGAR M, AHMADINIA E, ASLI H, et al. Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen[J]. Journal of Hazardous Materials, 2012, 233: 254-258.
[5] SU Junfei, QIU Jian, SCHLANGEN E, et al. Investigation the possibility of a new approach of using microcapsules containing waste cooking oil: In situ-rejuvenation for aged bitumen[J]. Construction and Building Materials, 2015, 74: 83-92.
[6] 肖川, 凌天清. 废旧橡胶粉改性沥青材料在道路工程中的应用与研究[J].公路工程, 2009, 34(4):49-53.
XIAO Chuan, LING Tianqing. Reaserch of waste crumb rubber modified used in highway engineering[J]. Highway Engineering, 2009, 34(4): 49-53.(in Chinese)
[7] 李廷刚, 李金钟, 李伟. 橡胶沥青微观机理研究及其公路工程应用[J]. 公路交通科技, 2011, 28(1): 25-30.
LI Tinggang, LI Jinzhong, LI Wei. Micro-mechanism study and road engineering application of rubber asphalt[J]. Journal of Highway and Transportation Reasearch and Development, 2011, 28(1):25-30.(in Chinese)
[8] LEE S J, AKISETTY C K, AMIRKHANIAN S N. The effect of crumb rubber modifier(CRM) on the performance properties of rubberized binders in HMA pavements[J]. Construction and Building Materials, 2008, 22(7): 1368-1376.
[9] PRESTI D L. Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review[J]. Construction and Building Materials, 2013, 49: 863-881.
[10] PERALTA J, SILVA H, WILLIAMS R, et al. Development of an innovative bio-binder using asphalt-rubber technology[J]. International Journal of Pavement Research & Technology, 2013, 6(4):447- 456.
[11] FINI E H, BOCOUM A, HOSSEINNEZHAD S, et al. Bio-modification of rubberized asphalt and its high temperature properties[J]. Transportation Research Record, 2015, 2506(1): 81-89.
[12] FINI E H, HOSSEINNEZHAD S, OLDHAM D, et al. Bio-modification of rubberised asphalt binder to enhance its performance[J]. International Journal of Pavement Engineering, 2019, 20(10): 1216-1225.
[13] LEI Yong, WANG Hainian, FINI E H, et al. Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt[J]. Construction and Building Materials, 2018, 191: 692-701.
[14] 方烁, 张广泰, 叶奋. 植物油活化胶粉沥青流变及微观性能研究[J]. 公路工程, 2018, 43(4): 116-119, 132.
FANG Shuo, ZHANG Guangtai, YE Fen. Rheological and micro properties of vegetable oils as activators for rubberized asphalt[J]. Highway Engineering, 2018, 43(4):116-119,132.( in Chinese)
[15] 牛冬瑜, 马英新, 仁乾龙珠, 等. 加工参数对地沟油/废旧橡胶粉复合改性沥青性能的影响[J]. 江苏大学学报自然科学版, 2018, 39(3): 355-361.
NIU Dongyu, MA Yingxin, RENQIAN Longzhu, et al. Influence of process parameters on waste oil and crumb rubber composite modified asphalt[J]. Journal of Jiangsu University Natural Science, 2018, 39(3): 355-361.(in Chinese)
[16] ZENG Wenbo, WU Shaopeng, WEN Jin, et al. The temperature effects in aging index of asphalt during UV aging process[J]. Construction and Building Materials, 2015, 93: 1125-1131.
[17] YAO Hui, DAI Qingli, YOU Zhanping. Fourier transform infrared spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders[J]. Construction and Building Materials, 2015, 101: 1078-1087.
[18] 徐鹏, 陈华鑫, 牛冬瑜, 等. 基于FT-IR谱图分区的彩色沥青性能对比分析[J]. 深圳大学学报理工版, 2018, 35(2): 146-150.
XU Peng, CHEN Huaxin, NIU Dongyu, et al. Comparative analysis of performance of colored asphalt based on the partition of FTIR graph[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(2): 146-150.(in Chinese)
[19] 丁湛, 邹鹏, 栗培龙. 胶粉在改性沥青中的物化行为分析[J]. 应用化学, 2017, 34(2): 204-210.
DING Zhan, ZOU Peng, LI Peilong. Analysis of physicochemical behavior of rubber powder in modified asphalt[J]. Chinese Journal of Applied Chemistry, 2017, 34(2): 204-210.(in Chinese)
[20] 何亮, 马育, 凌天清, 等. 橡胶改性沥青及老化特征微观尺度分析[J]. 功能材料, 2015, 46(21): 21093-21098.
HE Liang, MA Yu, LING Tianqing, et al. Micro-scale analysis of rubber modified asphalt and aging characteristics[J]. Journal of Functional Materials, 2015, 46(21): 21093-21098.(in Chinese)

相似文献/References:

[1]栗振锋,张敏.FWD动载下的横观各向同性路基动力响应分析[J].深圳大学学报理工版,2013,30(No.2(111-220)):195.[doi:10.3724/SP.J.1249.2013.02195]
 Li Zhenfeng and Zhang Min.The analysis of dynamic response of transversely isotropic subgrade based on FWD[J].Journal of Shenzhen University Science and Engineering,2013,30(6):195.[doi:10.3724/SP.J.1249.2013.02195]
[2]胡江洋,毛君,张浩,等.火山渣作为路基填料的试验研究[J].深圳大学学报理工版,2015,32(6):625.[doi:10.3724/SP.J.1249.2015.06625]
 Hu Jiangyang,Mao Jun,et al.Research on test characteristic of cinder as subgrade filling[J].Journal of Shenzhen University Science and Engineering,2015,32(6):625.[doi:10.3724/SP.J.1249.2015.06625]
[3]刘国光,武志玮,牛富俊,等.基于BP神经网络的场道脱空检测方法及实验[J].深圳大学学报理工版,2016,33(3):309.[doi:10.3724/SP.J.1249.2016.03309]
 Liu Guoguang,Wu Zhiwei,Niu Fujun,et al.Airport pavement void testing based on back propagation neural network[J].Journal of Shenzhen University Science and Engineering,2016,33(6):309.[doi:10.3724/SP.J.1249.2016.03309]
[4]胡江洋,陈团结,折学森.路用改性煤沥青毒性消减试验效果分析[J].深圳大学学报理工版,2016,33(4):418.[doi:10.3724/SP.J.1249.2016.04418]
 Hu Jiangyang,Chen Tuanjie,et al.Analysis of toxicity reduction test about modified coal tar used for road[J].Journal of Shenzhen University Science and Engineering,2016,33(6):418.[doi:10.3724/SP.J.1249.2016.04418]
[5]吴朝阳,杨少伟,林岚,等.互通式立交高事故率出口的判定方法[J].深圳大学学报理工版,2016,33(5):536.[doi:10.3724/SP.J.1249.2016.05536]
 Wu Zhaoyang,Yang Shaowei,Lin Lan,et al.Method for identifying the high accident rate exits of interchange[J].Journal of Shenzhen University Science and Engineering,2016,33(6):536.[doi:10.3724/SP.J.1249.2016.05536]
[6]武志玮,刘国光,刘智勇.基于小波变换的场道脱空识别[J].深圳大学学报理工版,2017,34(3):265.[doi:10.3724/SP.J.1249.2017.03265]
 Wu Zhiwei,Liu Guoguang,and Liu Zhiyong,et al.Runway pavement void identification based on wavelet transform[J].Journal of Shenzhen University Science and Engineering,2017,34(6):265.[doi:10.3724/SP.J.1249.2017.03265]
[7]杨俊,李晓峰,相飞飞,等.废弃混凝土用作再生路面的试验研究[J].深圳大学学报理工版,2017,34(3):252.[doi:10.3724/SP.J.1249.2017.03252]
 Yang Jun,Li Xiaofeng,Xiang Feifei,et al.Experimental study on waste concrete as regenerate pavement[J].Journal of Shenzhen University Science and Engineering,2017,34(6):252.[doi:10.3724/SP.J.1249.2017.03252]
[8]柯文豪,陈华鑫,雷宇,等.基于GRNN神经网络的沥青路面裂缝预测方法[J].深圳大学学报理工版,2017,34(4):378.[doi:10.3724/SP.J.1249.2017.04378]
 Ke Wenhao,Chen Huaxin,Lei Yu,et al.Prediction method for asphalt pavement crack based on GRNN neural network[J].Journal of Shenzhen University Science and Engineering,2017,34(6):378.[doi:10.3724/SP.J.1249.2017.04378]
[9]李晶晶,张擎,陈忠达.水泥路面环氧树脂磨耗层的抗滑衰变模型[J].深圳大学学报理工版,2017,34(6):597.[doi:10.3724/SP.J.1249.2017.06597]
 Li Jingjing,Zhang Qing,and Chen Zhongda.Skid resistance decay model of epoxy wear layer on cement pavement[J].Journal of Shenzhen University Science and Engineering,2017,34(6):597.[doi:10.3724/SP.J.1249.2017.06597]
[10]王威娜,李小飞,徐青杰,等.沥青路面二维和三维结构分析模型的比较[J].深圳大学学报理工版,2018,35(1):39.[doi:10.3724/SP.J.1249.2018.01039]
 WANG Weina,LI Xiaofei,XU Qingjie,et al.Comparison of two dimensional and three dimensional modeling methods on the mechanical response of asphalt pavement[J].Journal of Shenzhen University Science and Engineering,2018,35(6):39.[doi:10.3724/SP.J.1249.2018.01039]

备注/Memo

备注/Memo:
Received:2020-02-01;Accepted:2020-06-21
Foundation:Open Fund Project of R & D Center of Transport Industry of Technologies, Materials and Equipments of Highway Construction and Maintenance (GLKF201812);National Natural Science Foundation of China (51608045, 51608046); Fujian Science and Technology Plan Guiding Project (2019y0048)
Corresponding author:Associate professor NIU Dongyu. E-mail: dongyu.niu@chd.edu.cn
Citation:NIU Dongyu, XIE Xiwang, YANG Zhengxian, et al.Molecular structure change and anti-aging performance of WFO-CR composite modified asphalts[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(6): 589-596.(in Chinese)
基金项目:公路建设与养护技术、材料及装备交通运输行业研发中心(甘肃路桥建设集团有限公司)开放基金资助项目(GLKF201812);国家自然科学基金资助项目(51608045,51608046);福建省科技计划助项目(2019y0048);中交第二航务局工程有限公司福州公司科研合作项目(00501901)
作者简介:牛冬瑜( 1984—),长安大学副教授、博士. 研究方向: 道路材料科学与工程.E-mail: dongyu.niu@chd.edu.cn
引文:牛冬瑜,谢希望,杨政险,等.WFO-CR改性沥青的分子结构变化与抗老化性能[J]. 深圳大学学报理工版,2020,37(6):589-596.
更新日期/Last Update: 2020-11-26