[1]姬凤玲,苏栋,许泽标,等.深圳粗粒花岗岩残积土原生各向异性特性研究[J].深圳大学学报理工版,2020,37(6):583-588.[doi:10.3724/SP.J.1249.2020.06583]
 JI Fengling,SU Dong,et al.The inherent anisotropy of coarse-grained granite residual soil in Shenzhen[J].Journal of Shenzhen University Science and Engineering,2020,37(6):583-588.[doi:10.3724/SP.J.1249.2020.06583]
点击复制

深圳粗粒花岗岩残积土原生各向异性特性研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第6期
页码:
583-588
栏目:
土木建筑工程
出版日期:
2020-11-09

文章信息/Info

Title:
The inherent anisotropy of coarse-grained granite residual soil in Shenzhen
文章编号:
202006005
作者:
姬凤玲12苏栋12许泽标1庞小朝3
1)深圳大学土木与交通工程学院,广东深圳 518060
2)深圳大学滨海城市韧性基础设施教育部重点实验室,广东深圳 518060
3)铁科院(深圳)研究设计院有限公司,广东深圳 518050
Author(s):
JI Fengling1 2 SU Dong1 2 XU Zebiao1 and PANG Xiaochao3
1) College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Key Laboratory of Coastal Urban Resilient Infrastructures (MOE), Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
3) China Academy of Railway Sciences (Shenzhen) Research and Design Institute Co. Ltd., Shenzhen 518050, Guangdong Province, P.R.China
关键词:
岩土工程花岗岩残积土 原状样三轴试验原生各向异性抗剪强度渗透系数
Keywords:
geotechnical engineering granite residual soil undisturbed specimen triaxial test inherent anisotropy shear strength coefficient of permeability
分类号:
U495
DOI:
10.3724/SP.J.1249.2020.06583
文献标志码:
A
摘要:
为研究深圳地区粗粒花岗岩残积土的原生各向异性特性,利用全自动三轴仪和渗透仪,对不同取样方向的原状样进行室内土工试验. 研究发现,原状样的渗透系数具有明显的各向异性特性,0°和90°方向取样的试样渗透系数接近,但比30°和60°方向取样的试样渗透系数明显要大. 原状样的抗剪强度参数各向异性特性明显,随着取样方向角度由0°、30°、60°和90°变化,试样的有效内摩擦角逐渐增大,但是30°和60°方向的有效内摩擦角差异较小;随着取样方向角度的增加,试样的有效黏聚力逐渐减小,60°和90°方向的有效黏聚力差异较小.
Abstract:
A series of experiments have been conducted to investigate the inherent anisotropy of Shenzhen coarse-grained granite residual soil by the automatic triaxial apparatus and permeameter. The results show that the permeability coefficient of undisturbed samples exhibits anisotropic features. The permeability coefficients are close for the sampling directions of 0° and 90°, but they are much greater than those for the sampling directions of 30° and 60°. Significant anisotropy has been observed in the shear strength parameters of undisturbed samples. With the sampling direction angles evolving from 0°, 30°, 60° to 90°, the effective internal friction angle of the sample increases gradually, but the difference between the samples of angles of 30° and 60° is small. In addition, with the increase of sampling direction angle, the effective cohesion of the sample decreases gradually, the difference between the effective cohesions of the samples of 60° and 90° can be negligible.

参考文献/References:

[1] 尹松, 孔令伟, 张先伟, 等. 基于自钻式旁压仪的残积土原位力学特性试验研究[J]. 岩土工程学报, 2016, 38(4): 688-695.
YIN Song, KONG Lingwei, ZHANG Xianwei, et al. Experimental study on the in-situ properties of residual soil by self-boring pressuremeter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 688-695.(in Chinese)
[2] 黎澄生, 安然, 舒荣军, 等. 花岗岩残积土初期崩解规律与数学形态学方法近似模拟[J]. 岩石力学与工程学报, 2020, 39(4): 845-854.
LI Chengsheng, AN Ran, SHU Rongjun, et al. Initial- disintegration analysis of granite residual soil and approximate simulation of mathematical morphology[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 845-854.(in Chinese)
[3] 张抒, 唐辉明. 非饱和花岗岩残积土崩解机制试验研究[J]. 岩土力学, 2013, 34(6): 1668-1674.
ZHANG Shu, TANG Huiming. Experimental study of disintegration mechanism for unsaturated granite residual soil[J]. Rock and Soil Mechanics, 2013, 34(6): 1668-1674.(in Chinese)
[4] 张勇, 姚赫, 李仁华,等. 花岗岩残积土垂直层次抗剪强度变异性研究[J]. 人民长江, 2016, 47(23): 91-96.
ZHANG Yong, YAO He, LI Renhua, et al. Study on spatial variability of shear strength in different vertical layers of granite residual soil[J]. Yangtze River, 2016, 47(23): 91-96.(in Chinese).
[5] VIANA D F A, CARVALHO J, FERREIRA C, et al. Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques[J]. Geotechnical & Geological Engineering, 2006, 24(5): 1307-1348.
[6] 尹松, 孔令伟, 杨爱武,等. 循环振动作用下残积土动力变形特性试验研究[J]. 振动与冲击, 2017, 36(11): 224-231.
YIN Song, KONG Lingwei, YANG Aiwu, et al. Tests for dynamic deformation characteristics of residual soil under cyclic loading[J]. Journal of Vibration and Shock, 2017, 36(11): 224-231.(in Chinese)
[7] 温勇, 杨光华, 汤连生, 等. 广州地区花岗岩残积土力学特性试验及参数研究[J]. 岩土力学, 2016, 37(增刊2): 209-215.
WEN Yong, YANG Guanghua, TANG Liansheng, et al. Tests and parameters study of mechanical properties of granite residual soil in Guangzhou area[J]. Rock and Soil Mechanics, 2016, 37(Suppl.2): 209-215.(in Chinese)
[8] ARTHUR J R F, MENZIES B K. Inherent anisotropy in a sand[J]. Geotechnique, 1972, 22(1): 115-128.
[9] 张坤勇, 殷宗泽, 梅国雄. 土体各向异性研究进展[J]. 岩土力学, 2004, 25(9): 1503-1509.
ZHANG Kunyong, YIN Zongze, MEI Guoxiong. Development of soil’s anisotropy study[J]. Rock and Soil Mechanics, 2004, 25(9): 1503-1509.(in Chinese)
[10] GUO P J. Modified direct shear test for anisotropic strength of sand[J].Journal of Geotechnical and Geoenvironmental Engineering,2008, 134(9): 1311-1318.
[11] PIETRUSZCZAK S, MROZ Z. On failure criteria for anisotropic cohesive-frictional materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(5): 509-524.
[12] 吴能森, 赵尘, 侯伟生. 花岗岩残积土的成因、分布及工程特性研究[J]. 平顶山工学院学报, 2004, 13(4): 1-4.
WU Nengsen, ZHAO Chen, HOU Weisheng. Research on the cause of formation, distribution and engineering characteristics of the granite residual soil[J]. Journal of Pingdingshan Institute of Technology, 2004, 13(4): 1-4.(in Chinese)
[13] 吴能森. 结构性花岗岩残积土的特性及工程问题研究[D]. 南京: 南京林业大学, 2005.
WU Nengsen. Study on the characteristics and engineering problems of structural granite residual soil[D]. Nanjing: Nanjing Forestry University, 2005.(in Chinese)
[14] 齐红升, 肖成志, 王子寒, 等. 深基坑智能联网监测与预警系统的研究及开发[J]. 深圳大学学报理工版, 2020, 37(1): 97-132.
QI Hongsheng, XIAO Chengzhi, WANG Zihan, et al. Research and development of intelligent network monitoring and warning system for deep foundation pit[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(1): 97-132.(in Chinese)
[15] 李芒原, 张传浩, 杨二东,等. 基于BIM+3D激光扫描技术的复杂深基坑监测技术研究及应用[J]. 建筑结构, 2019, 49(增刊1): 751-755.
LI Mangyuan, ZHANG Chuanhao, YANG Erdong, et al. Application of complex deep foundation pit safety supervision integrated platform based on BIM + 3D laser scanning technology[J]. Building Structure, 2019, 49 (Suppl.1): 751-755.(in Chinese)
[16] GB/T 50123—2019 土工试验方法标准[S].
GB/T 50123—2019 Standard for soil test method[S].(in Chinese)
[17] ADAMS A L, NORDQUIST M T J, GERMAINE J T, et al. Permeability anisotropy and resistivity anisotropy of mechanically compressed mud rocks[J]. Canadian Geotechnical Journal, 2016, 53(9): 1474-1482.
[18] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.
LI Guangxin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004.(in Chinese)

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(6):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(6):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(6):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(6):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(6):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(6):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(6):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(6):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(6):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(6):501.[doi:10.3724/SP.J.1249.2017.05501]

备注/Memo

备注/Memo:
Received:2019-11-09;Accepted:2020-05-07
Foundation:National Key R & D Program of China (2018YFB2100901); National Natural Science Foundation of China (51938008, 51878416)
Corresponding author:Professor SU Dong.E-mail: sudong@szu.edu.cn
Citation:JI Fengling,SU Dong,XU Zebiao,et al.The inherent anisotropy of coarse-grained granite residual soil in Shenzhen[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(6): 583-588.(in Chinese)
基金项目:国家重点研发计划资助项目(2018YFB2100901);国家自然科学基金资助项目(51938008, 51878416)
作者简介:姬凤玲(1971—),深圳大学副教授.研究方向:环境岩土工程.E-mail:384412510@qq.com
引文:姬凤玲,苏栋,许泽标,等.深圳粗粒花岗岩残积土原生各向异性特性研究[J]. 深圳大学学报理工版,2020,37(6):583-588.
更新日期/Last Update: 2020-11-26