[1]黄赵星,孙红,葛修润.固结条件下软黏土孔隙的演化特征分析[J].深圳大学学报理工版,2020,37(6):576-582.[doi:10.3724/SP.J.1249.2020.06576]
 HUANG Zhaoxing,SUN Hong,and GE Xiurun.Evolution of soft clay pores under consolidation[J].Journal of Shenzhen University Science and Engineering,2020,37(6):576-582.[doi:10.3724/SP.J.1249.2020.06576]
点击复制

固结条件下软黏土孔隙的演化特征分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第6期
页码:
576-582
栏目:
土木建筑工程
出版日期:
2020-11-09

文章信息/Info

Title:
Evolution of soft clay pores under consolidation
文章编号:
202006004
作者:
黄赵星孙红葛修润
上海交通大学土木工程系,上海市公共建筑和基础设施数字化运维重点实验室,上海 200240
Author(s):
HUANG Zhaoxing SUN Hong and GE Xiurun
Department of Civil Engineering, Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Shanghai Jiao Tong University, Shanghai 200240, P.R.China
关键词:
岩土工程软黏土微观结构分形理论孔隙比阈值固结试验
Keywords:
geotechnical engineering soft clay microstructure fractal theory pore ratio threshold consolidation test
分类号:
TU43
DOI:
10.3724/SP.J.1249.2020.06576
文献标志码:
A
摘要:
为探求软黏土固结时微观结构演化规律,对上海软黏土的原状土和重塑土进行固结-电镜试验,采用图像处理技术和分形理论研究孔隙比、孔隙尺度及孔隙度分维数的变化特征,为获得三维孔隙比提出一种确定图像二值化阈值的方法. 结果表明,利用该法获得的三维孔隙比准确性较高;干密度影响孔隙的大小和形状,固结压力改变颗粒间的接触形式和分布;结构性的影响贯穿固结全过程,压密阶段孔隙度分维数和孔隙比快速下降,结构重组阶段孔隙度分维数开始增长,孔隙比下降速率放缓;新的平衡阶段孔隙度分维数逐渐降低,结构趋于密实,孔隙比轻微下降.
Abstract:
Shanghai soft clay is studied by consolidation test and electron microscopy in order to explore microstructure evolution during consolidation. Image processing techniques and fractal theory are used to study the variation characteristics of pore ratio, pore size and porosity fractal dimension. The threshold determination method of image binarization is adopted to obtain a high accuracy of three-dimensional pore ratio.The dry density affects the size and shape of the pores and the consolidation pressure changes the contact pattern and distribution between the particles. The microstructure has a strong influence on the whole process of consolidation. In the compacting stage, the fractal dimension and the pore ratio decrease rapidly. During the microstructure rearrangement stage, the fractal dimension begins to increase, and the rate of decrease of the pore ratio slows down. In the new balance stage, the fractal dimension gradually decreases, the structure tends to be dense, and the pore ratio decreases slightly.

参考文献/References:

[1] LIN B, CERATO A B. Prediction of expansive soil swelling based on four micro-scale properties[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(1):71-78.
[2] 熊承仁, 唐辉明, 刘宝琛. 利用SEM照片获取土的孔隙结构参数[J]. 地球科学, 2007, 32(3): 415-419.
XIONG Chenren, TANG Huiming, LIU Baochen. Using SEM photos to gain the pore structural parameters of soil samples[J]. Earth Science, 2007, 32(3): 415-419.(in Chinese)
[3] 张先伟, 孔令伟, 郭爱国, 等. 基于 SEM 和 MIP 试验结构性黏土压缩过程中微观孔隙的变化规律[J]. 岩石力学与工程学报, 2012, 31(2): 406-412.
ZHANG Xianwei, KONG Lingwei, GUO Aiguo, et al. Evolution of microscopic pore of structured clay in compressiong process based on SEM and MIP test[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 406-412.(in Chinese)
[4] 唐益群, 严婧婧. 上海冻融淤泥质软黏土孔隙结构特征分形研究[J]. 同济大学学报自然科学版, 2019, 47(5): 627-633.
TANG Yiqun, YANG Jingjing. Fractals of pore strucure characteristic of muddy clay in Shanghai after artifical ground freezing[J]. Journal of Tongji University Natural Science, 2019, 47(5): 627-633.(in Chinese)
[5] 陈波, 孙德安, 高游, 等. 上海软黏土的孔径分布试验研究[J]. 岩土力学, 2017, 38(9): 2523-2530.
CHEN Bo, SUN De’an, GAO You, et al. Experimental study of pore-size distribution of Shanghai soft clay[J]. Rock and Soil Mechanics, 2017, 38(9): 2523-2530.(in Chinese)
[6] 陶高梁, 朱学良, 胡其志. 黏性土压缩过程临界孔径现象及固有分形特征[J]. 岩土力学, 2019, 40(1): 88-97.
TAO Gaoliang, ZHU Xueliang, HU Qizhi. Critical pore-size phenomenon and intrinsic fractal characteristic of clay in process of compression[J]. Rock and Soil Mechanics, 2019, 40(1): 88-97.(in Chinese)
[7] 张英, 邴慧, 杨成松. 基于SEM和MIP的冻融循环对粉质黏土强度影响机制研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3597-3603.
ZHANG Ying, BING Hui, YANG Chengsong. Influences of freeze-thaw cycles on mechanicalporperties of silty clay based on SEM and MIP test[J]. Chinese Journal of Geotechnical Engineering,2015,34(Suppl.1): 3597-3603.(in Chinese)
[8] 蒋明镜, 吴迪, 曹培, 等. 基于SEM图片的钙质砂连通孔隙分析[J]. 岩土工程学报, 2017, 39(增刊1): 1-5.
JIANG Mingjing, WU Di, CAO Pei, et al. Connected inner pore analysis of calcareous sands using SEM[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(Suppl.1): 1-5.(in Chinese)
[9] 张季如, 祝杰, 黄丽, 等. 固结条件下软黏土微观孔隙结构的演化及其分形描述[J].水利学报,2008, 39(4):394-400.
ZHANG Jiru, ZHU Jie, HUNGA Li, et al. Evolution of micro pore structure of soft clay and its fractal features under consolidation[J]. Journal of Hydraulic Engineering, 2008, 39(4): 394-400.(in Chinese)
[10] 徐日庆, 邓祎文, 徐波, 等. 基于SEM图像的软土三维孔隙率计算及影响因素分析[J]. 岩石力学与工程学报, 2015, 34(7): 1497-1502.
XU Riqing, DENG Yiwen, XU Bo, et al. Calculation of three-dimensional porosity of soft soil based on SEM image[J]. Chinese Jounal of Geotechnical Engineering, 2015, 34(7): 1497-1502.(in Chinese)
[11] 王升福, 杨平, 刘贯荣, 等. 人工冻融软黏土微观孔隙变化及分形特性分析[J].岩土工程学报, 2016, 38(7): 1254-1261.
WANG Shengfu, YANG Ping, LIU Guanrong, et al. Micro-pore change and fractal characteristics of artificial freezethaw soft clay[J].Rock and Soil Mechanics, 2016, 38(7): 1254-1261.(in Chinese)
[12] 吴凯, 倪万魁, 刘海松, 等. 压实黄土强度特性与微观结构变化关系研究[J].水文地质工程地质, 2016, 43(5): 62-69.
WU Kai, NI Wankui, LIU Haisong, et al. Research on the relationships between the strength properties ofcompacted loess and microstructural changes[J]. Hydrogeology & Engineering Geology, 2016, 43(5): 62-69.(in Chinese)

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(6):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(6):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(6):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(6):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(6):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(6):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(6):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(6):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(6):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(6):501.[doi:10.3724/SP.J.1249.2017.05501]

备注/Memo

备注/Memo:
Received:2019-09-09;Accepted:2020-03-05
Foundation:National Natural Science Foundation of China (41572255)
Corresponding author:Associate professor SUN Hong. E-mail: sunhong@sjtu.edu.cn
Citation:HUANG Zhaoxing,SUN Hong,GE Xiurun.Evolution of soft clay pores under consolidation[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(6): 576-582.(in Chinese)
基金项目:国家自然科学基金资助项目(41572255)
作者简介:黄赵星(1995—),上海交通大学硕士研究生.研究方向:岩土的工程性质与数值模拟.E-mail:zhaoxing1995@sjtu.edu.cn
引文:黄赵星,孙红,葛修润.固结条件下软黏土孔隙的演化特征分析[J]. 深圳大学学报理工版,2020,37(6):576-582.
更新日期/Last Update: 2020-11-26