[1]郭邦红,胡敏,毛睿,等.量子保密通信与量子计算[J].深圳大学学报理工版,2020,37(6):551-558.[doi:10.3724/SP.J.1249.2020.06551]
 GUO Banghong,HU Min,et al.Recent progress in quantum cryptography and quantum computation[J].Journal of Shenzhen University Science and Engineering,2020,37(6):551-558.[doi:10.3724/SP.J.1249.2020.06551]
点击复制

量子保密通信与量子计算()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第6期
页码:
551-558
栏目:
电子与信息科学
出版日期:
2020-11-09

文章信息/Info

Title:
Recent progress in quantum cryptography and quantum computation
文章编号:
202006001
作者:
郭邦红12胡敏2毛睿1陈国良13
1)深圳大学计算机与软件学院,广东深圳 518060
2)华南师范大学信息光电子科技学院,广东省微纳光子功能材料与器件重点实验室,广东广州 510631
3)南京邮电大学高性能计算与大数据处理研究所,江苏南京 210003
Author(s):
GUO Banghong1 2 HU Min2 MAO Rui1 and CHEN Guoliang1 3
1) College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) School of Information and Optoelectronic Science and Engineering, Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, Guangdong Province, P.R.China
3) Research Institute of High Performance Computing and Big Data Processing, Nanjing University of Posts and Telecommunication, Nanjing 210003, Jiangsu Province, P.R.China
关键词:
量子调控量子保密通信量子网络高性能量子密钥分发量子计算机量子算法
Keywords:
quantum control quantum secure communication quantum network high-performance quantum key distribution quantum computer quantum algorithm
分类号:
O43; TN918
DOI:
10.3724/SP.J.1249.2020.06551
文献标志码:
A
摘要:
量子保密通信与量子计算作为战略性前沿技术,与国家安全和前瞻性技术战略关系密切,未来量子计算机的应用必将极大推动量子网络规模化应用.本文综述分析量子保密通信与量子计算的研究进展,重点介绍高性能量子密钥分发(quantum key distribution, QKD)终端、量子网络和量子计算领域在量子芯片器件和量子位操控等方面的基础科学问题,以及量子与经典通信融合等实用量子关键技术.
Abstract:
As a strategic frontier technology, quantum cryptography and quantum computation are closely related to national security and forward-looking technology strategy, and the application of quantum computation in the future will definitely promote the large-scale application of quantum networks. We briefly review the research progress of quantum secure communication and quantum computing and focus on the introduction of the high-performance quantum key distribution (QKD) terminal, quantum network, basic scientific problems of quantum computing in quantum chip devices and qubits manipulation and some practical important quantum technologies such as the integration of quantum and classical communication.

参考文献/References:

[1] BENNETT C H, BRASSARD G. Quantum cryprography: public key distribution and coin tossing[C]// Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India: Institute of Electrical and Electronics Engineers, 1984: 175-179.
[2] STUCKI D, WALENTA N, VANNEL F, et al. High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres[J]. New Journal of Physics, 2009, 11(7): 075003.
[3] WANG Shuang, CHEN Wei, GUO Junfu, et al. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber[J]. Optics Letters, 2012, 37(6): 1008-1010.
[4] INAGAKI T, MATSUDA N, TADANAGA O, et al. Entanglement distribution over 300 km of fiber[J]. Optics Express, 2013, 21(20): 23241-23249.
[5] INAGAKI T, MATSUDA N, TADANAGA O, et al. Long distance distribution of entangled photon pair over 300 km of fiber[C]// CLEO: 2013. Washington D C: OSA, 2013: QTu2C.2.
[6] YIN Hualei, CHEN Tengyun, YU Zongwen, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19): 190501.
[7] CHEN Jiupeng, ZHANG Chi, LIU Yang, et al. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km[J]. Physical Review Letters, 2020, 124(7): 070501.
[8] QI Ruoyang, SUN Zhen, LIN Zaisheng, et al. Implementation and security analysis of practical quantum secure direct communication[J]. Light: Science & Applications, 2019, 8(1): 228.
[9] 苗二龙,莫小范,桂有珍,等.相位调制自由空间量子密钥分配[J].物理学报,2004,53(7):2123-2126.
MIAO Erlong, MO Xiaofan, GUI Youzhen, et al. Phase-modulated free space quantum key distribution[J]. Acta Physica Sinica, 2004, 53(7): 2123-2126.(in Chinese)
[10] 郭邦红,张盼盼,胡敏.位相偏波多自由度変調QKDネットワークシステム及びその方法.特願2019-502561[P].2017-12-20.
GUO Banghong, ZHANG Panpan, HU Min. Phase and polarization multi-degree-of-freedom modulated QKD network system and method. Japanese patent: 2019-502561.[P]. 2017-12-20.(in Japanese)
[11] LIU Aiping, ZOU Changling, REN Xifeng, et al. On-chip generation and control of the vortex beam[J]. Applied Physics Letters, 2016, 108(18): 181103.

[12] MARTIN A, ALIBART O, DE MICHELI M P, et al. A quantum relay chip based on telecommunication integrated optics technology[J]. New Journal of Physics, 2012, 14(2): 025002.
[13] SPRING J B, MENNEA P L, METCALF B J, et al. Chip-based array of near-identical, pure, heralded single-photon sources[J]. Optica, 2017, 4(1): 90.
[14] BELHASSEN J, BABOUX F, YAO Q, et al. On-chip III-V monolithic integration of heralded single photon sources and beamsplitters[J]. Applied Physics Letters, 2018, 112(7): 071105.
[15] WANG Jianwei, BONNEAU D, VILLA M, et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion[J]. Optica, 2016, 3(4): 407.
[16] SIBSON P, ERVEN C, GODFREY M, et al. Chip-based quantum key distribution[J]. Nature Communications, 2017, 8: 13984.
[17] WANG Hui, QIN Jian, DING Xing, et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional hilbert space[J]. Physical Review Letters, American Physical Society, 2019, 123(25): 250503.
[18] GUO Jianjun, LIANG Yao, HUANG Guang, et al. Pure dielectric waveguides enable compact, ultrabroadband wave plates[J]. IEEE Photonics Journal, 2016, 8(5): 1-9.
[19] YAO Liang, ZHANG Fengchun, GU Jiahua, et al. Integratable quarter-wave plates enable one-way angular momentum conversion[J]. Scientific Reports, 2016, 6: 24959.
[20] YANG Huizhan, ZHANG Jianhao, ZHU Yuntao, et al. Ultra-compact and temperature-insensitive Mach-Zehnder interferometer based on one multimode waveguide on silicon[J]. Optics Letters, 2017, 42(3): 615.
[21] NEGREVERGNE C, MAHESH T S, RYAN C A, et al. Benchmarking quantum control methods on a 12-qubit system[J]. Physical Review Letters, 2006, 96(17): 170501.
[22] XIN Tao, HUANG Shilin, LU Sirui, et al. NMRCloudQ: a quantum cloud experience on a nuclear magnetic resonance quantum computer[J]. Science Bulletin, 2018, 63(1): 17-23.
[23] WANG Xilin, LUO Yihan, HUANG Heliang, et al. 18-qubit entanglement with six photons’ three degrees of freedom[J]. Physical Review Letters, 2018, 120(26): 260502.
[24] TANG Hao, LIN Xiaofeng, FENG Zhen, et al. Experimental two-dimensional quantum walk on a photonic chip[J]. Science Advances, 2018, 4(5): 1-7.
[25] CIRAC J I, ZOLLER P. Quantum computations with cold trapped ions[J]. Physical Review Letters, 1995, 74(20): 4091-4094.
[26] DIVINCENZO D P. Dogma and heresy in quantum computing[J]. Quantum Information & Computation, 2001, 1(4): 1-6.
[27] WRIGHT K, BECK K M, DEBNATH S, et al. Benchmarking an 11-qubit quantum computer[J]. Nature Communications, 2019, 10(1): 1-6.
[28] WANG Ye, UM M, ZHANG Junhua, et al. Single-qubit quantum memory exceeding ten-minute coherence time[J]. Nature Photonics, 2017, 11(10): 646-650.
[29] LU Yao, ZHANG Shuaining, ZHANG Kuan, et al. Global entangling gates on arbitrary ion qubits[J]. Nature, 2019, 572(7769): 363-367.
[30] D-wave System Inc. The D-wave 2000QTM system: the most advanced quantum computer in the world[EB/OL].[2020-02-15]. https://www.dwavesys.com/d-wave-two-system.
[31] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2(1): 79.
[32] CHEN Zhaoyun, ZHOU Qi, XUE Cheng, et al. 64-qubit quantum circuit simulation[J]. Science Bulletin, 2018, 63(15): 964-971.
[33] SONG Chao, XU Kai, LI Hekang, et al. Generation of multicomponent atomic Schrdinger cat states of up to 20 qubits[J]. Science, 2019, 365(6453): 574-577.
[34] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th Annual Symposium on Foundations of Computer Science. New York, USA: IEEE Computer Society Press, 1996, 59(3): 124-134.
[35] GROVER L K. A fast quantum mechanical algorithm for database search[C]// Proceedings of the 28th Annual ACM Symposium on Theory of Computing. New York, USA: ACM Press, 1996: 212-219.
[36] MONTANARO A. Quantum algorithms: an overview[J]. npj Quantum Information, 2016, 2(1): 15023.
[37] MARTN-LPEZ E, LAING A, LAWSON T, et al. Experimental realization of Shor’s quantum factoring algorithm using qubit recycling[J]. Nature Photonics, 2012, 6(11): 773-776.
[38] VANDERSYPEN L M K, STEFFEN M, BREYTA G, et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance[J]. Nature, 2001, 414(6866): 883-887.
[39] KING J, YARKONI S, NEVISI M M, et al. Benchmarking a quantum annealing processor with the time-to-target metric[EB/OL]. (2015-08-20)[2020-03-01]. https://arxiv.org/abs/1508.05087.
[40] CAI X D, WEEDBROOK C, SU Z E, et al. Experimental quantum computing to solve systems of linear equations[J]. Physical Review Letters, 2013, 110(23): 230501.
[41] BARZ S, KASSAL I, RINGBAUER M, et al. A two-qubit photonic quantum processor and its application to solving systems of linear equations[J]. Scientific Reports, 2014, 4: 6115.
[42] PAN Jian, CAO Yudong, YAO Xiwei, et al. Experimental realization of quantum algorithm for solving linear systems of equations[J]. Physical Review A: Atomic, Molecular, and Optical Physics, 2014, 89(2): 1-5.
[43] LARSEN M V, GUO X, BREUM C R, et al. Deterministic generation of a two-dimensional cluster state[J]. Science, 2019, 366(6463): 369-372.
[44] HE Yu, DING Xing, SU Z E, et al. Time-bin-encoded boson sampling with a single-photon device[J]. Physical Review Letters, 2017, 118(19): 190501.
[45] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[46] YANG Mu, REN Changliang, MA Yuechi, et al. Experimental simultaneous learning of multiple nonclassical correlations[J]. Physical Review Letters, 2019, 123(19): 190401.
[47] TOWNSEND P D, PHOENIX S J D, BLOW K J, et al. Design of quantum cryptography systems for passive optical networks[J]. Electronics Letters, 1994, 30(22): 1875-1877.
[48] BRASSARD G, BUSSIERES F, GODBOUT N, et al. Multiuser quantum key distribution using wavelength division multiplexing[C]// SPIE Proceedings: Applications of Photonic Technology 6. Quebec City, Canada: SPIE, 2003, 5260: 149-153.
[49] ELLIOTT C, COLVIN A, PEARSON D, et al. Current status of the DARPA quantum network[C]// SPIE Proceedings: Quantum Information and Computation 3. Orlando, USA: SPIE, 2005: 138-149 .
[50] PEEV M, PACHER C, ALLAUME R, et al. The SECOQC quantum key distribution network in Vienna[J]. New Journal of Physics, 2009, 11(7): 075001.
[51] CHEN Wei, HAN Zhengfu, ZHANG Tao, et al. Field experiment on a “star type” metropolitan quantum key distribution network[J]. IEEE Photonics Technology Letters, 2009, 21(9): 575-577.
[52] WANG Shuang, CHEN Wei, YIN Zhenqiang, et al. Field test of wavelength-saving quantum key distribution network[J]. Optics Letters, 2010, 35(14): 2454-2456.
[53] CHEN Tengyun, WANG Jian, LIANG Hao, et al. Metropolitan all-pass and inter-city quantum communication network[J]. Optics Express, 2010, 18(26): 27217-27225.
[54] LI Yang, LIAO Shengkai, CHEN Xiele, et al. Space-bound optical source for satellite-ground decoy-state quantum key distribution[J]. Optics Express, 2014, 22(22): 27281-27289.
[55] SASAKI M, FUJIWARA M, ISHIZUKA H, et al. Field test of quantum key distribution in the Tokyo QKD network[J]. Optics Express, 2011, 19(11): 10387-10409.
[56] 王忠耀, 吴春燕. 粤港澳大湾区:共担使命 同享荣光[N]. 光明日报, 2019-02-20(10).
WANG Zhongyao, WU Chunyan. Guangdong-Hong Kong-Macao greater bay area: sharing the mission and sharing the glory[N]. Guangming Daily, 2019-02-20(10).(in Chinese)
[57] XU Feihu, MA Xiongfeng, ZHANG Qiang, et al. Secure quantum key distribution with realistic devices[J]. Reviews of Modern Physics, 2020, 92(2): 025002.

备注/Memo

备注/Memo:
Received:2020-03-31;Accepted:2020-06-24
Foundation:National Natural Science Foundation of China(61572203); Key-Area Research and Development Program of Guangdong Province (2018B030325002)
Corresponding author:Postdoctoral researcher GUO banghong.E-mail: guobangh@163.com
Citation:GUO Banghong, HU Min, MAO Rui, et al. Recent progress in quantum cryptography and quantum computation[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(6): 551-558.(in Chinese)
基金项目:国家自然科学基金资助项目(61572203);广东省重点领域研发计划资助项目(2018B030325002)
作者简介:郭邦红(1975—),深圳大学博士后研究人员.研究方向:量子通信与量子计算.E-mail:guobangh@163.com
引文:郭邦红,胡敏,毛睿,等.量子保密通信与量子计算[J]. 深圳大学学报理工版,2020,37(6):551-558.
更新日期/Last Update: 2020-11-26