[1]江昀,许国庆,石阳,等.致密岩心带压渗吸的影响因素实验研究[J].深圳大学学报理工版,2020,37(5):497-506.[doi:10.3724/SP.J.1249.2020.05497]
 JIANG Yun,XU Guoqing,SHI Yang,et al.Experimental study on influencing factors for forced imbibition in tight sandstone cores[J].Journal of Shenzhen University Science and Engineering,2020,37(5):497-506.[doi:10.3724/SP.J.1249.2020.05497]
点击复制

致密岩心带压渗吸的影响因素实验研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第5期
页码:
497-506
栏目:
环境与能源
出版日期:
2020-09-15

文章信息/Info

Title:
Experimental study on influencing factors for forced imbibition in tight sandstone cores
文章编号:
202005007
作者:
江昀1许国庆2石阳1曾星航2王天一1
1)中国石油勘探开发研究院, 北京 100083
2)中国石化石油工程技术研究院,北京 100101
Author(s):
JIANG Yun1 XU Guoqing2 SHI Yang1 ZENG Xinghang2 and WANG Tianyi1
1) Research Institute of Petroleum Exploration & Development, Petro China, Beijing 100083, P.R.China
2) SINOPEC Research Institute of Petroleum Engineering, Beijing 100101, P.R.China
关键词:
油气藏开发致密砂岩带压渗吸低场核磁共振技术渗吸置换效率边界条件初始含水饱和度层理方向矿化度鄂尔多斯盆地
Keywords:
oil and gas field development tight sandstone forced imbibition low-field nuclear magnetic resonance (LF-NMR) technology oil recovery boundary condition initial water saturation bedding direction salinity Ordos basin
分类号:
TE355
DOI:
10.3724/SP.J.1249.2020.05497
文献标志码:
A
摘要:
为研究不同因素对于带压渗吸效果影响,结合低场核磁共振技术,开展5 MPa压差(基质外部流体压力与孔隙压力之差)作用下的致密砂岩带压渗吸实验,研究边界条件、初始含水饱和度、层理方向和矿化度等因素对带压渗吸的影响.结果表明,接触面积越大,渗吸置换效率(也称采收率)越高;初始含水饱和度越高,渗吸置换效率越低;沿垂直层理方向钻取的岩心样品渗吸置换效率高于平行层理方向岩心样品;矿化度越高,渗透压差越大,渗吸置换效率越低.研究结果为深入探讨带压渗吸作用,提高致密砂岩油藏采收率的内在机理提供参考.
Abstract:
As to study the effect of different factors on forced imbibition (FI) in tight sandstone, FI experiments under 5 MPa pressure difference (the difference between hydraulic fluid pressure and original pore pressure) were conducted in combination with low-field nuclear magnetic resonance (LF-NMR) technology. The effects of boundary conditions, initial water saturation, bedding plane (BP) direction and fluid salinity on FI were systematically investigated. The results showed that the oil recovery (OR) was higher for cores with bigger contact area, higher initial water saturation would result in lower OR. Cores with perpendicular BP direction had higher OR than that with parallel BP direction. Less water was imbibed into cores as the salinity increased, which resulted in lower OR. The results provide reference for understanding mechanism of OR improvement in tight sandstone reservoirs, which originated from FI.

参考文献/References:

[1] HOLDITCH, S A, TSCHIRHART N. Optimal stimulation treatments in tight gas sands[C]// SPE Annual Technical Conference and Exhibition. Dallas, USA: Society of Petroleum Engineers, 2005:96104.
[2] 杨华,付金华.超低渗透油藏勘探理论与技术[M]. 北京:石油工业出版社,2012.
YANG Hua, FU Jinhua. Exploration theory and technology for ultra-low permeability reservoirs[M]. Beijing: Petroleum Industry Press, 2012.(in Chinese)
[3] 杨智,邹才能,吴松涛,等.含油气致密储层纳米级孔喉特征及意义[J].深圳大学学报理工版,2015,32(3):257-265.
YANG Zhi, ZOU Caineng, WU Songtao, et al. Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(3): 257-265. (in Chinese)
[4] GHANBARI E, DEHGHANPOUR H. The fate of fracturing water: a field and simulation study[J]. Fuel, 2016, 163: 282-294.
[5] GHANBARI E, ABBASI M A, DEHGHANPOUR H, et al. Flowback volumetric and chemical analysis for evaluating load recovery and its impact on early-time production[C]// SPE Unconventional Resources Conference. Calgary, Canada: Society of Petroleum Engineers, 2013: 167165.
[6] HABIBI A, BINAZADEH M, DEHGHANPOUR H, et al. Advances in understanding wettability of tight oil formations[C]// SPE Annual Technical Conference and Exhibition. Houston, USA: Society of Petroleum Engineers, 2015: 175157.
[7] CARPENTER C. Impact of liquid loading in hydraulic fractures on well productivity[J]. Journal of Petroleum Technology, 2013, 65(11): 162-165.
[8] AKBARABADI M, SARAJI S, PIRI M., et al. Nano-scale experimental investigation of in-situ wettability and spontaneous imbibition in ultra-tight reservoir rocks[J]. Advances in Water Resources, 2017, 107: 160-179.
[9] JIANG Yun, SHI Yang, XU Guoqing, et al. Experimental study on spontaneous imbibition under forced pressure in tight sandstone cores based on low-field nuclear magnetic resonance measurements[J]. Energy & Fuels, 2018, 32(3): 3152-3162.
[10] 李帅,丁云宏,刘广峰,等.致密储层体积改造润湿反转提高采收率的研究[J].深圳大学学报理工版,2017,34(1): 98-104.
LI Shuai, DING Yunhong, LIU Guangfeng, et al. Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(1): 98-104.(in Chinese)
[11] 党海龙,肖前华,高瑞民,等.延长油田长7致密油储层CO2驱替特征[J].深圳大学学报理工版,2019,36(3): 298-303.
DANG Hailong, XIAO Qianhua, GAO Ruimin, et al. Characteristics of CO2 displacement for Chang 7 tight reservoir in Yanchang oilfield[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(3): 298-303.(in Chinese)
[12] WASHBURN E W. The dynamics of capillary flow[J]. Physical Review A, 1921, 17(3): 273-283.
[13] SCHMID K S, GEIGER S. Universal scaling of spontaneous imbibition for arbitrary petrophysical properties: water-wet and mixed-wet states and Handy’s conjecture[J]. Journal of Petroleum Science and Engineering, 2013, 101: 44-61.
[14] MCWHORTER D B, SUNADA D K. Exact integral solutions for two-phase flow[J]. Water Resources Research, 1990, 26(3): 399-413.
[15] MATTAX C C, KYTE J R. Imbibition oil recovery from fractured, water-drive reservoir[J]. Society of Petroleum Engineers Journal, 1962, 2(2): 177-184.
[16] MA Shouxiang, MORROW N R., ZHANG Xiaoyun. Generalized scaling of spontaneous imbibition data for strongly water-wet systems[J]. Journal of Petroleum Science and Engineering, 1997, 18(3/4): 165-178.
[17] MASON G, FISCHER H, MORROW N R, et al. Correlation for the effect of fluid viscosities on counter-current spontaneous imbibition[J]. Journal of Petroleum Science and Engineering, 2010, 72(1/2), 195-205.
[18] ZHANG Xiaoyun, MORROW N R, MA Shouxiang. Experimental verification of a modified scaling group for spontaneous imbibition[J]. Society of Petroleum Engineers Reservoir Engineering, 1996, 11(4), 280-285.
[19] MIRZAEI-PAIAMAN A. Analysis of counter-current spontaneous imbibition in presence of resistive gravity forces: displacement characteristics and scaling[J]. Journal of Unconventional Oil and Gas Resources, 2015, 12(Suppl. C): 68-86.
[20] CAI Jianchao, PERFECT E, CHENG Chulin, et al. Generalized modeling of spontaneous imbibition based on hagen-poiseuille flow in tortuous capillaries with variably shaped apertures[J]. Langmuir, 2014, 30(18): 5142-5151.
[21] NASRALLA R A, BATAWEEL M A, NASR-EL-DIN H A. Investigation of wettability alteration and oil-recovery improvement by low-salinity water in sandstone rock[J]. Journal of Canadian Petroleum Technology, 2013, 52(2): 144-154.
[22] LI Kewen, CHOW K, HORNE R N. Effect of initial water saturation on spontaneous water imbibition[C]// SPE Western Regional/AAPG Pacific Section Joint Meeting. Anchorage, AK, 2002: 76727.
[23] FINI M F, RIAHI S, BAHRAMIAN A. Experimental and QSPR studies on the effect of ionic surfactants on n-decane-water interfacial tension[J]. Journal of Surfactants and Detergents, 2012, 15(4): 477-484.
[24] ADIBHATLA B, MOHANTY K K. Parametric analysis of surfactant-aided imbibition in fractured carbonates[J]. Journal of Colloid and Interface Science, 2008, 317(2): 513-522.
[25] TINNI A, ODUSINA E, SULUCARNAIN I, et al. Nuclear-magnetic-resonance response of brine, oil, and methane in organic-rich shales[J]. SPE Reservoir Evaluation & Engineering, 2015, 18(3): 400-406.
[26] MENG Mianmo, GE Hongkui, JI Wenming, et al. Monitor the process of shale spontaneous imbibition in co-current and counter-current displacing gas by using low field nuclear magnetic resonance method[J]. Journal of Natural Gas Science and Engineering, 2015, 27(1): 336-345.
[27] BENNION D B, THOMAS F B. Formation damage issues impacting the productivity of low permeability, low initial water saturation gas producing formations[J]. Journal of Energy Resources Technology, 2005, 127(3): 240-247.
[28] HALUSZCZAK L O, Rose A W, KUMP L R, et al. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA[J]. Applied Geochemistry, 2013, 28(3): 55-61.

相似文献/References:

[1]孙军昌,杨正明,唐立根,等.致密气藏束缚水分布规律及含气饱和度研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):377.
 SUN Jun-chang,YANG Zheng-ming,TANG Li-gen,et al.Study on distribution law of irreducible water and gas saturation of tight sandstone gas reservoir[J].Journal of Shenzhen University Science and Engineering,2011,28(5):377.
[2]徐庆岩,杨正明,何英,等.超低渗透油藏非线性渗流数值模拟[J].深圳大学学报理工版,2012,29(No.6(471-580)):504.[doi:10.3724/SP.J.1249.2012.06504]
 XU Qing-yan,YANG Zheng-ming,HE Ying,et al.Numerical simulation of nonlinear seepage in super-low permeability reservoirs[J].Journal of Shenzhen University Science and Engineering,2012,29(5):504.[doi:10.3724/SP.J.1249.2012.06504]
[3]滕起,杨正明,刘学伟,等.特低渗透油藏井组开发过程物理模拟[J].深圳大学学报理工版,2013,30(No.3(221-330)):299.[doi:10.3724/SP.J.1249.2013.03299]
 Teng Qi,Yang Zhengming,Liu Xuewei,et al.Well group development process physical simulation of the ultra-low permeability reservoirs[J].Journal of Shenzhen University Science and Engineering,2013,30(5):299.[doi:10.3724/SP.J.1249.2013.03299]

备注/Memo

备注/Memo:
Received:2019-09-23;Accepted:2019-12-06 Foundation:National Science and Technology Major Project of China (2016ZX05046-004) Corresponding author:Senior engineer SHI Yang.E-mail: shy312@petrochina.com.cn Citation:JIANG Yun, XU Guoqing, SHI Yang, et al.Experimental study on influencing factors for forced imbibition in tight sandstone cores[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(5): 497-506.(in Chinese)
基金项目:国家科技重大专项资助项目(2016ZX05046-004)
作者简介:江昀(1990—),中国石油勘探开发研究院工程师、博士.研究方向:储层改造.E-mail:jiangyun119@petrochina.com.cn
引文:江昀,许国庆,石阳,等. 致密岩心带压渗吸的影响因素实验研究[J]. 深圳大学学报理工版,2020,37(5):497-506.
更新日期/Last Update: 2020-07-26