[1]孟洁,等.3段式集成DFB激光器微波信号仿真[J].深圳大学学报理工版,2020,37(5):459-465.[doi:10.3724/SP.J.1249.2020.05459]
 MENG Jie,QIAO Lijun,et al.Simulation of microwave signal generation based on three-section monolithic integrated DFB laser[J].Journal of Shenzhen University Science and Engineering,2020,37(5):459-465.[doi:10.3724/SP.J.1249.2020.05459]
点击复制

3段式集成DFB激光器微波信号仿真()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第5期
页码:
459-465
栏目:
光电工程
出版日期:
2020-09-15

文章信息/Info

Title:
Simulation of microwave signal generation based on three-section monolithic integrated DFB laser
文章编号:
202005002
作者:
孟洁1 2乔丽君1 2张明江1 2张建忠1 2王涛1 2
1)太原理工大学新型传感器与智能控制教育部与山西省重点实验室,山西太原 030024
2)太原理工大学物理与光电工程学院,光电工程研究所,山西太原 030024
Author(s):
MENG Jie1 2 QIAO Lijun1 2 ZHANG Mingjiang1 2 ZHANG Jianzhong1 2 and WANG Tao1 2
1)Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R.China
2) College of Physics and Optoelectronics, Institute of Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R.China
关键词:
非线性光学多段式半导体激光器单片集成麦克斯韦-布洛赫方程行波速率方程光互注入微波信号
Keywords:
nonlinear optics multi-section semiconductor laser monolithic integration Maxwell-Bloch’s equations traveling wave rate equations optical mutual injection microwave signal
分类号:
TN242
DOI:
10.3724/SP.J.1249.2020.05459
文献标志码:
A
摘要:
为研究集成激光器生成微波信号特性,基于光注入法设计面向微波信号生成的3段式单片集成分布反馈二极管激光器(distributed feedback laser diode,DFB-LD).基于麦克斯韦-布洛赫模型,构建DFB-LD的行波速率方程组,并搭建基于多段式单片集成激光器的仿真系统,研究3段式生成微波的时序、光谱及频谱特性,分析激光器偏置电流、波导偏置电流及波导失谐量对微波信号特性的影响.仿真结果表明,频谱在激光器偏置电流达到阈值电流的6倍时不再存在拍频分量,微波频率随着波导偏置电流的增大基本保持不变,通过调节波导失谐量可对微波信号实现14.29 GHz的调谐范围.研究结果为集成半导体器件产生微波信号提供新思路和方法.
Abstract:
In order to simulate the characteristics of microwave signal generated by integrated laser, we design the laser structure of three-section monolithic integrated distributed feedback semiconductor laser diode (DFB-LD) for microwave signal generation based on the optical injection method. On the basis of Maxwell-Bloch’s mathematical model, we construct the traveling wave equations of DFB-LD and set up a multi-section monolithic integrated laser simulation system. Then we study the characteristics of the time series, optical spectra and frequency spectra for the generated microwave signal and analyze the effect of the bias current of the DFB laser on the right-hand, the bias current of the waveguide and the waveguide bandgap detuning on the characteristics of the microwave signals. The simulation results show that there is no beat component in the frequency spectrum when the bias current of the laser reaches 6 times of the threshold current, the microwave frequency remains unchanged with the increase of the waveguide bias current, and the tuning range of 14.29 GHz can be achieved by adjusting the waveguide detuning. This research provides a new idea and method for the generation of microwave signals by integrated semiconductor devices.

参考文献/References:

[1] LU Dan, PAN Biwei, CHEN Haibo, et al. Frequency-tunable optoelectronic oscillator using a dual-mode amplified feedback laser as an electrically controlled active microwave photonic filter[J]. Optics Letters, 2015, 40(18):4340-4343.
[2] LO K H, HWANG S K, DONATI S. Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers[J]. Optics Express, 2014, 22(15):18648-18661.
[3] LI Ming, LI Ze, YAO Jianping. Photonic generation of precisely π phase-shifted binary phase-coded microwave signal[J]. IEEE Photonics Technology Letters, 2012, 24(22):2001-2004.
[4] QUIRCE A, VALLE A. High-frequency microwave signal generation using multi-transverse mode VCSELs subject to dual-beam optical injection[J]. Optics Express, 2012, 20(12):13390-13401.
[5] LI Ze, LI Wangzhe, CHI Hao, et al. Photonic generation of phase-coded microwave signal with large frequency tenability[J]. IEEE Photonics Technology Letters, 2011, 23(11):712-714.
[6] LIU Weisheng, JIANG Meng, CHEN Daru, et al. Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation[J]. Journal of Lightwave Technology, 2009, 27(20):4455-4459.
[7] 王沁泉,陈福深. 光学外差法产生微波信号特性的研究[J].半导体光电, 2009, 30(6):955-957.
WANG Qinquan, CHEN Fushen. Research on characteristics of microwave signals generated by optical heterodyne[J]. Semiconductor Optoelectronics, 2009, 30(6): 955-957.(in Chinese)
[8] FAN Li, WU Zhengmao, DENG Tao, et al. Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser[J]. IEEE Journal Lightwave Technology, 2014, 32(23):4058-4064.
[9] 陈东军,袁鑫,王如刚.基于布里渊散射的高频可调谐微波信号产生技术的研究[J].盐城工学院学报自然科学版, 2015, 28(3):52-55.
CHEN Dongjun, YUAN Xin, WANG Rugang. Study on high frequency tunable microwave signal generation based on Brillouin scattering[J]. Journal of Yancheng Institute of Technology Natural Science Edition, 2015, 28(3): 52-55.(in Chinese)
[10] LIU Meng, LIU Hao, ZHENG Xuwu, et al.Demonstration of multiwavelength erbium-doped fiber laser based on a microfiber knot resonator[J]. IEEE Photonics Technology Letters, 2014, 26(14):1387-1390.
[11] LIU Weilin, WANG Muguang, YAO Jianping. Tunable microwave and sub-terahertz generation based on frequency quadrupling using a single polarization modulator[J]. IEEE Journal Lightwave Technology, 2013, 31(10):1636-1644.
[12] 沈颖,王荣,蒲涛.基于高阶受激布里渊散射的高频微波信号产生技术[J].光学学报, 2010, 30(6):1571-1575.
SHEN Ying, WANG Rong, PU Tao. A novel technique to generate high-frequency microwave signal based on high-order stimulated Brillouin scattering[J]. Acta Optica Sinica, 2010, 30(6):1571-1575.(in Chinese)
[13] 熊锦添,王荣,蒲涛,等.光注入条件下分布反馈半导体激光器的放大特性研究及其在微波信号产生中的应用[J]. 光学学报, 2013, 33(6):170-174.
XIONG Jintian, WANG Rong, PU Tao, et al. Amplification properties of a distribution feedback semiconductor laser under optical injection and its application in generating microwave signals[J]. Acta Optica Sinica, 2013, 33(6):170-174.(in Chinese)
[14] RASHIDINEJAD A, WEINER A M. Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability[J]. Journal of Lightwave Technology, 2014, 32(20):3383-3393.
[15] 张鹏,王天枢,贾青松,等. 基于8字型结构布里渊多波长光纤激光器的可调谐高频微波产生[J].中国激光, 2014, 41(12):28-32.
ZHANG Peng, WANG Tianshu, JIA Qingsong, et al. Tunable microwave signal generation based on a multi-wavelength Brillouin fiber laser in a figure of eight configuration[J]. Chinese Journal of Lasers, 2014, 41(12):28-32.(in Chinese)
[16] 李玲,任伟. 基于双波长激光器的光学微波信号的产生[J].光通信技术, 2015, 39(9):42-43.
LI Ling, REN Wei. Optical microwave generation based on dual-wavelength fiber laser[J]. Optical Communication Technology, 2015, 29(9):42-43.(in Chinese)
[17] JAIN A, BAHL R K, BANIK A. Microwave frequency quadrupling based on optical intensity modulation[C]// International Conference on Microelectronics, Computing and Communications.Durgapur, India: IEEE, 2016: 1-5.
[18] 梁卿,樊利,杨继云,等. 基于光电负反馈的光注入1550nm垂直腔面发射激光器产生窄线宽微波信号[J].光子学报, 2017, 46(3):69-75.
LIANG Qing, FAN Li, YANG Jiyun et al. Narrow-linewidth photonic microwave acquisition based on an optically injected 1550nm vertical-cavity surface-emitting laser under optoelectronic negative feedback[J]. Acta Photonica Sinica, 2017, 46(3):69-75.(in Chinese)
[19] 庞海越,林晓东,吴正茂,等. 结合光注入半导体激光器与光电环路产生频率大范围可调、窄线宽微波信号[J].光子学报, 2018, 47(1):126-132.
PANG Haiyue, LIN Xiaodong, WU Zhengmao, et al. Widely tunable narrow-linewidth photonic microwave generation using optically injected semiconductor laser combined with optoelectronic loops[J]. Acta Photonica Sinica, 2018, 47(1):126-132.(in Chinese)
[20] 尚海燕,冯德军.基于线性腔光纤激光器产生可调谐微波信号的研究[J].武汉工程大学学报, 2018, 40(1):114-118.
SHANG Haiyan, FENG Dejun. Generation of tunable optical microwave signal based on linear cavity fiber laser[J]. Journal of Wuhan Institute of Technology, 2018, 40(1):114-118.(in Chinese)

相似文献/References:

[1]郑国梁,欧阳征标,徐世祥.吸收对准相位匹配线性电光效应的影响[J].深圳大学学报理工版,2010,27(2):152.
 ZHENG Guo-liang,OUYANG Zheng-biao,and XU Shi-xiang.The effect of absorption on the quasi-phase-matched linear electro-optic effect[J].Journal of Shenzhen University Science and Engineering,2010,27(5):152.
[2]夏林中,苏红,管明祥,等.温度调谐的周期极化掺氧化镁铌酸锂振荡器[J].深圳大学学报理工版,2011,28(No.5(377-470)):405.
 XIA Lin-zhong,SU Hong,GUAN Ming-xiang,et al.Temperature tunable optical parametric oscillator based on MgO-doped PPLN[J].Journal of Shenzhen University Science and Engineering,2011,28(5):405.
[3]倪洁蕾,程亚.飞秒激光成丝若干新效应研究进展[J].深圳大学学报理工版,2014,31(1):1.[doi:10.3724/SP.J.1249.2014.01001]
 Ni Jielei and Cheng Ya.Several new phenomena in femtosecond laser filamentation[J].Journal of Shenzhen University Science and Engineering,2014,31(5):1.[doi:10.3724/SP.J.1249.2014.01001]
[4]屈军乐,陈丹妮,杨建军,等.二次谐波成像及其在生物医学中的应用[J].深圳大学学报理工版,2006,23(1):1.
 QU Jun-le,CHEN Dan-ni,YANG Jian-jun,et al. Second harmonic generation imaging and its applications in biomedicine[J].Journal of Shenzhen University Science and Engineering,2006,23(5):1.
[5]郝中华,刘劲松.高斯光束在光伏光折变晶体中的孤波演化[J].深圳大学学报理工版,2001,18(1):15.
 HAO Zhong-hua,LIU Jin-song.Solitary Evolution of Gaussian Beam in Photovoltaic-photorefractive Crystal[J].Journal of Shenzhen University Science and Engineering,2001,18(5):15.
[6]龙井华,阮双琛,巨养锋,等.新型超短光脉冲测量技术[J].深圳大学学报理工版,2001,18(4):46.
 LONG Jing-hua,RUAN Shuang-chen,JU Yang-feng and Zhu Qin.New Techniques for Measuring the Ultrashort Optical Pulses[J].Journal of Shenzhen University Science and Engineering,2001,18(5):46.
[7]李云亭,张明江,刘毅,等.动态噪声差分算法实现拉曼测温仪高精度检测[J].深圳大学学报理工版,2017,34(1):20.[doi:10.3724/SP.J.1249.2017.01020]
 Li Yunting,Zhang Mingjiang,et al.High precision measurement for Raman distributed temperature sensor by dynamic noise difference algorithm[J].Journal of Shenzhen University Science and Engineering,2017,34(5):20.[doi:10.3724/SP.J.1249.2017.01020]
[8]刘伟,刘双龙,陈丹妮,等.CARS显微成像系统的空间分辨率标定[J].深圳大学学报理工版,2017,34(3):272.[doi:10.3724/SP.J.1249.2017.03272]
 Liu Wei,Liu Shuanglong,Chen Danni,et al.Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy[J].Journal of Shenzhen University Science and Engineering,2017,34(5):272.[doi:10.3724/SP.J.1249.2017.03272]
[9]杨帅军,张建忠,刘毅,等.面向混沌激光器的高精度温控与驱动电路设计[J].深圳大学学报理工版,2018,35(5):495.[doi:10.3724/SP.J.1249.2018.05495]
 YANG Shuaijun,ZHANG Jianzhong,LIU Yi,et al.Design of precise temperature controller and current driver for chaotic laser[J].Journal of Shenzhen University Science and Engineering,2018,35(5):495.[doi:10.3724/SP.J.1249.2018.05495]
[10]刘强,王琼,欧阳征标.基于混合微腔的高效率太赫兹波产生[J].深圳大学学报理工版,2019,36(2):140.[doi:10.3724/SP.J.1249.2019.02140]
 LIU Qiang,WANG Qiong,et al.Efficient terahertz wave generation based on hybrid micro-cavity[J].Journal of Shenzhen University Science and Engineering,2019,36(5):140.[doi:10.3724/SP.J.1249.2019.02140]

备注/Memo

备注/Memo:
Received:2019-03-31;Accepted:2019-05-16
Foundation:National Natural Science Foundation of China (61527819); Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Shanxi Province (163220114-S); Scientific Research Foundation for the Returned Overseas Chinese Scholars of Shanxi Province (2016-036, 2017-052)
Corresponding author:Professor ZHANG Mingjiang.E-mail: zhangmingjiang@tyut.edu.cn
Citation:MENG Jie, QIAO Lijun, ZHANG Mingjiang, et al.Simulation of microwave signal generation based on three-section monolithic integrated DFB laser[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(5): 459-465.(in Chinese)
基金项目:国家自然科学基金资助项目(61527819);山西省高等学校中青年拔尖创新人才基金资助项目(163220114-S);山西省回国留学人员科研基金资助项目(2016-036, 2017-052)
作者简介:孟洁(1993—),太原理工大学硕士研究生. 研究方向:光通信器件. E-mail:jxtx0616@126.com
引文:孟洁,乔丽君,张明江,等.3段式集成DFB激光器微波信号仿真[J]. 深圳大学学报理工版,2020,37(5):459-465.
更新日期/Last Update: 2020-07-26