[1]闵长俊,袁运琪,张聿全,等.操纵微纳颗粒的“光之手”——光镊技术研究进展[J].深圳大学学报理工版,2020,37(5):441-458.[doi:10.3724/SP.J.1249.2020.05441]
 MIN Changjun,YUAN Yunqi,ZHANG Yuquan,et al.The hand of light for micro/nano-particle manipulation: research progress of optical tweezers[J].Journal of Shenzhen University Science and Engineering,2020,37(5):441-458.[doi:10.3724/SP.J.1249.2020.05441]
点击复制

操纵微纳颗粒的“光之手”——光镊技术研究进展()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第5期
页码:
441-458
栏目:
光电工程
出版日期:
2020-09-15

文章信息/Info

Title:
The hand of light for micro/nano-particle manipulation: research progress of optical tweezers
文章编号:
202005001
作者:
闵长俊袁运琪张聿全汪先友张治斌袁小聪
深圳大学纳米光子学研究中心,深圳市微尺度光信息重点实验室,微纳光电子学研究院,广东深圳 518060
Author(s):
MIN Changjun YUAN Yunqi ZHANG Yuquan WANG Xianyou ZHANG Zhibin and YUAN Xiaocong
Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
光学 光镊 光学全息 矢量光束 表面等离激元 光纤光镊 表面增强拉曼散射 三维显示
Keywords:
optics optical tweezers optical holography vector beam surface plasmon fiber optical tweezers surface-enhanced Raman scattering three dimensional display
分类号:
O436
DOI:
10.3724/SP.J.1249.2020.05441
文献标志码:
A
摘要:
光镊是操纵微纳米尺寸颗粒的重要技术手段,已在物理、化学、生物及医学等领域得到广泛应用.综述近年来光镊领域的研究进展,系统介绍光镊研究的主要方向及代表性成果.介绍了光镊技术的理论基础,包括光镊捕获物体的作用机理和几种常用理论模型;按照产生光镊的光束类型将光镊技术分为结构光束光镊、多光束与全息光镊、近场倏逝波光镊、表面等离激元光镊、光纤光镊、热电光镊、飞秒激光光镊及异常光学力光镊,分别介绍各类光镊技术的特点和最新进展;介绍光镊技术在生物样品操纵、分子检测及裸眼三维显示等领域的创新应用,并对光镊技术发展进行总结和展望.
Abstract:
Optical tweezer is an important technology for trapping and manipulating micro/nano-particles, which has widely been applied in physics, chemistry, biology, medicine and other fields. In this work, based on the research progresses in recent years, we systematically review the main research directions and representative achievements of optical tweezers. We introduce the theoretical basis about the mechanism of capturing objects and several common theoretical models of optical tweezers. According to the distribution of incident light beams, we classify the optical tweezers into structural beam optical tweezer, multi-beam and holographic optical tweezer, near-field evanescent wave tweezer, surface plasmon optical tweezer, optical fiber tweezer, opto-thermoelectric tweezer, femtosecond laser tweezer, and extraordinary optical forces tweezer. And the characteristics and latest developments of optical tweezers are discussed in detail respectively. In terms of innovative applications, we emphatically focus in the fields of biological sample manipulation, molecular detection, naked-eye three dimensional display, etc. In the final section, we provide a summary and prospect about the future development of optical tweezers technology.

参考文献/References:

[1] ASHKIN A, DZIEDZIC J M, BJORKHOLM J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290.
[2] RAMSER K, HANSTORP D. Optical manipulation for single-cell studies[J]. Journal of Biophotonics, 2010, 3(4): 187-206.
[3] LI T C, KHEIFETS S, RAIZEN M G. Millikelvin cooling of an optically trapped microsphere in vacuum[J]. Nature Physics, 2011, 7(7): 527-530.
[4] JONAS A, ZEMANEK P. Light at work: the use of optical forces for particle manipulation, sorting, and analysis[J]. Electrophoresis, 2008, 29(24): 4813-4851.
[5] QUIDANT R, GIRARD C. Surface-plasmon-based optical manipulation[J]. Laser & Photonics Reviews, 2008, 2(1/2): 47-57.
[6] LUKOSZ W, KUNZ R E. Light-emission by magnetic and electric dipoles close to a plane interface. I. total radiated power[J]. Journal of the Optical Society of America, 1977, 67(12): 1607-1615.
[7] GUSSGARD R, LINDMO T, BREVIK I. Calculation of the trapping force in a strongly focused laser-beam[J]. Journal of the Optical Society of America B: Optical Physics, 1992, 9(10): 1922-1930.
[8] CHAUMET P C, NIETO-VESPERINAS M. Time-averaged total force on a dipolar sphere in an electromagnetic field[J]. Optics Letters, 2000, 25(15): 1065-1067.
[9] HARADA Y, ASAKURA T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J]. Optics Communications, 1996, 124(5/6): 529-541.
[10] GREHAN G, MAHEU B, GOUESBET G. Scattering of laser-beams by mie scatter centers-numerical results using a localized approximation[J]. Applied Optics, 1986, 25(19): 3539-3548.
[11] CHAUMET P C, NIETO-VESPERINAS M. Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate[J]. Physical Review B, 2000, 61(20): 14119-14127.
[12] LOCK J A. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-mie theory. I. localized model description of an on-axis tightly focused laser beam with spherical aberration[J]. Applied Optics, 2004, 43(12): 2532-2544.
[13] SONG Y G, HAN B M, CHANG S. Force of surface plasmon-coupled evanescent fields on mie particles[J]. Optics Communications, 2001, 198(1/2/3): 7-19.
[14] REN K F, GREHAN G, GOUESBET G. Prediction of reverse radiation pressure by generalized Lorenz-mie theory[J]. Applied Optics, 1996, 35(15): 2702-2710.
[15] SASAKI K, KOSHIOKA M, MISAWA H, et al. Optical trapping of a metal-particle and a water droplet by a scanning laser-beam[J]. Applied Physics Letters, 1992, 60(7): 807-809.
[16] GRIFFITHS D J. Introduction to electrodynamics[M]. Englewood Cliffs, USA: Prentice-Hall, 1981.
[17] 曹志良, 梁言生, 严绍辉, 等. 不同偏振态光镊三维光阱刚度的比较研究[J]. 光子学报,2019, 48(7): 0726002.
CAO Zhiliang, LIANG Yansheng, YAN Shaohua, et al. Comparison investigation of the three-dimensional stiffness of optical tweezers with different polarization fields[J]. Acta Photonica Sinica, 2019, 48(7): 0726002.(in Chinese)
[18] TONG L M, MILJKOVIC V D, ALIGNMENT K M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces[J]. Nano Letters, 2010, 10(1): 268-273.
[19] RODRIGUEZ-OTAZO M, AUGIER-CALDERIN A, GALAUP J P, et al. High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light[J]. Applied Optics, 2009, 48(14): 2720-2730.
[20] SIMPSON S H, HANNA S. Optical trapping of spheroidal particles in gaussian beams[J]. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 2007, 24(2): 430-443.
[21] BLIOKH K Y, RODRIGUEZ-FORTUNO F J, NORI F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 2015, 9(12): 796-808.
[22] PARKIN S, KNONER G, NIEMINEN T A, et al. Measurement of the total optical angular momentum transfer in optical tweezers[J]. Optics Express, 2006, 14(15): 6963-6970.
[23] ORON R, BLIT S, DAVIDSON N, et al. The formation of laser beams with pure azimuthal or radial polarization[J]. Applied Physics Letters, 2000, 77(21): 3322-3324.
[24] CURTIS J E, GRIER D G. Structure of optical vortices[J]. Physical Review Letters, 2003, 90(13): 133901.
[25] SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy airy beams[J]. Optics Letters, 2007, 32(8): 979-981.
[26] MIN Changjun, SHEN Zhe, SHEN Junfeng, et al. Focused plasmonic trapping of metallic particles[J]. Nature Communications, 2013, 4: 2891.
[27] WANG Xianyou, ZHANG Yuquan, DAI Yanmeng, et al. Enhancing plasmonic trapping with a perfect radially polarized beam[J]. Photonics Research, 2018, 6(9): 847-852.
[28] ZHANG Yuquan, DOU Xiujie, DAI Yanmeng, et al. All-optical manipulation of micrometer-sized metallic particles[J]. Photonics Research, 2018, 6(2): 66-71.
[29] PADGETT M, BOWMAN R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6): 343-348.
[30] SIMPSON N B, DHOLAKIA K, ALLEN L, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J]. Optics Letters, 1997, 22(1): 52-54.
[31] ZHENG Zhu, ZHANG Baifu, CHEN Hao, et al. Optical trapping with focused airy beams[J]. Applied Optics, 2011, 50(1): 43-49.
[32] BAUMGARTL J, MAZILU M, DHOLAKIA K. Optically mediated particle clearing using airy wavepackets[J]. Nature Photonics, 2008, 2(11): 675-678.
[33] LI Manman, YAN Shaohui, YAO Baoli, et al. Optically induced rotation of rayleigh particles by vortex beams with different states of polarization[J]. Physics Letters A, 2016, 380(1/2): 311-315.
[34] LI Manman, YAN Shaohui, YAO Baoli, et al. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations[J]. Optics Express, 2016, 24(18): 20604-20612.
[35] MAN Zhongsheng, DU Luping, ZHANG Yuquan, et al. Focal and optical trapping behaviors of radially polarized vortex beam with broken axial symmetry[J]. AIP Advances, 2017, 7(6): 4984813.
[36] BHEBHE N, WILLIAMS P A C, ROSALES-GUZMAN C, et al. A vector holographic optical trap[J]. Scientific Reports, 2018, 8: 17387.
[37] GECEVICIUS M, DREVINSKAS R, BERESNA M, et al. Single beam optical vortex tweezers with tunable orbital angular momentum[J]. Applied Physics Letters, 2014, 104(23): 231110.
[38] FALLMAN E, AXNER O. Design for fully steerable dual-trap optical tweezers[J]. Applied Optics, 1997, 36(10): 2107-2113.
[39] MIO C, GONG T, TERRAY A, et al. Design of a scanning laser optical trap for multiparticle manipulation[J]. Review of Scientific Instruments, 2000, 71(5): 2196-2200.
[40] CHU S, HOLLBERG L, BJORKHOLM J E, et al. 3-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters, 1985, 55(1): 48-51.
[41] CURTIS J E, KOSS B A, GRIER D G. Dynamic holographic optical tweezers[J]. Optics Communications, 2002, 207(1/2/3/4/5/6): 169-175.
[42] SHAW L A, SPADACCINI C M, HOPKINS J B. Scanning holographic optical tweezers[J]. Optics Letters, 2017, 42(15): 2862-2865.
[43] KIRKHAM G R, BRITCHFORD E, UPTON T, et al. Precision assembly of complex cellular microenvironments using holographic optical tweezers[J]. Scientific Reports, 2015, 5: 8577.
[44] YU Xianghua, LI Runze, YAN Shaowei, et al. Experimental demonstration of 3D accelerating beam arrays[J]. Applied Optics, 2016, 55(11): 3090-3095.
[45] GARCES-CHAVEZ V, DHOLAKIA K, SPALDING G C. Extended-area optically induced organization of microparticies on a surface[J]. Applied Physics Letters, 2005, 86(3): 031106.
[46] GU Min, HAUMONTE J B, MICHEAU Y, et al. Laser trapping and manipulation under focused evanescent wave illumination[J]. Applied Physics Letters, 2004, 84(21): 4236-4238.
[47] GU Min, KE Puchun. Depolarization of evanescent waves scattered by laser-trapped gold particles: effect of particle size[J]. Journal of Applied Physics, 2000, 88(9): 5415-5420.
[48] KURIAKOSE S, GAN Xiasong, CHON J W M, et al. Optical lifting force under focused evanescent wave illumination: a ray optics model[J]. Journal of Applied Physics, 2005, 97(8): 083103.
[49] KAWATA S, SUGIURA T. Movement of micrometer-sized particles in the evanescent field of a laser-beam[J]. Optics Letters, 1992, 17(11): 772-774.
[50] NG L N, ZERVAS M N, WILKINSON J S, et al. Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide[J]. Applied Physics Letters, 2000, 76(15): 1993-1995.
[51] RIGHINI M, ZELENINA A S, GIRARD C, et al. Parallel and selective trapping in a patterned plasmonic landscape[J]. Nature Physics, 2007, 3(7): 477-480.
[52] ZHANG Weihua, HUANG Lina, SANTSCHI C, et al. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas[J]. Nano Letters, 2010, 10(3): 1006-1011.
[53] LIN Y C, LEE P T. Efficient optical trapping and detection of nanoparticle via plasmonic bowtie notch[J]. IEEE Photonics Journal, 2019, 11(2): 4800610.
[54] SHOJI T, SAITOH J, KITAMURA N, et al. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light[J]. Journal of the American Chemical Society, 2013, 135(17): 6643-6648.
[55] WANG Xianyou, DAI Yanmeng, ZHANG Yuquan, et al. Plasmonic manipulation of targeted metallic particles by polarization-sensitive metalens[J]. ACS Photonics, 2018, 5(7): 2945-2950.
[56] MAN Zhongsheng, ZHANG Shuoshuo, BAI Zhidong, et al. All-optical and dynamic manipulation of surface plasmon polaritons by tailoring the polarization state of incident light[J]. Laser Physics Letters, 2019, 16(2): 026001.
[57] ZHANG Yuquan, SHI Wei, SHEN Zhe, et al. A plasmonic spanner for metal particle manipulation[J]. Scientific Reports, 2015, 5: 15446.
[58] ZHANG Yuquan, WANG Jian, SHEN Junfeng, et al. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface[J]. Nano Letters, 2014, 14(11): 6430-6436.
[59] LI Zhipeng, ZHANG Shunping, TONG Lianming, et al. Ultrasensitive size-selection of plasmonic nanoparticles by fano interference optical force[J]. ACS Nano, 2014, 8(1): 701-708.
[60] PAIVA J S, JORGE P S, ROSA C C, et al. Optical fiber tips for biological applications: from light confinement, biosensing to bioparticles manipulation[J]. Biochimica et Biophysica Acta-General Subjects, 2018, 1862(5): 1209-1246.
[61] RIBEIRO R R, SOPPERA O, OLIVA A G, et al. New trends on optical fiber tweezers[J]. Journal of Lightwave Technology, 2015, 33(16): 3394-3405.
[62] RICKELT L F, OTTOSEN L D M, KUHL M. Etching of multimode optical glass fibers: a new method for shaping the measuring tip and immobilization of indicator dyes in recessed fiber-optic microprobes[J]. Sensors and Actuators B: Chemical, 2015, 211: 462-468.
[63] VAIANO P, CAROTENUTO B, PISCO M, et al. Lab on fiber technology for biological sensing applications[J]. Laser & Photonics Reviews, 2016, 10(6): 922-961.
[64] ZHU Wei, SHI Tielin, TANG Zirong, et al. Dynamic selective etching: a facile route to parabolic optical fiber nano-probe[J]. Optics Express, 2013, 21(6): 6919-6927.
[65] XIN Hongbao, LI Baojun. Fiber-based optical trapping and manipulation[J]. Frontiers of Optoelectronics, 2019, 12(1): 97-110.
[66] YUAN Libo, LIU Zhihai, YANG Jun, et al. Twin-core fiber optical tweezers[J]. Optics Express, 2008, 16(7): 4559-4566.
[67] LI Yuchao, XIN Hongbao, LIU Xiaoshuai, et al. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array[J]. ACS Nano, 2016, 10(6): 5800-5808.
[68] LU Jinsheng, YANG Hangbo, ZHOU Lina, et al. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force[J]. Physical Review Letters, 2017, 118(4): 043601.
[69] CHEN Jiajie, CONG Hengji, LOO F C, et al. Thermal gradient induced tweezers for the manipulation of particles and cells[J]. Scientific Reports, 2016, 6: 35814.
[70] LIN Linhan, PENG Xiaolei, ZHENG Yuebing. Reconfigurable opto-thermoelectric printing of colloidal particles[J]. Chemical Communications, 2017, 53(53): 7357-7360.
[71] LIU Yaoran, LIN Linhan, RAJEEVA B B, et al. Nanoradiator-mediated deterministic opto-thermoelectric manipulation[J]. ACS Nano, 2018, 12(10): 10383-10392.
[72] KOTNALA A, ZHENG Yuebing. Opto-thermophoretic fiber tweezers[J]. Nanophotonics, 2019, 8(3): 475-485.
[73] KOLLIPARA P S, LIN Linhan, ZHENG Yuebing. Thermo-electro-mechanics at individual particles in complex colloidal systems[J]. Journal of Physical Chemistry C, 2019, 123(35): 21639-21644.
[74] LIN Linhan, WANG Mingsong, PENG Xiaolei, et al. Opto-thermoelectric nanotweezers[J]. Nature Photonics, 2018, 12(4): 195-201.
[75] KOTSIFAKI D G, KANDYLA M, LAGOUDAKIS P G. Plasmon enhanced optical tweezers with gold-coated black silicon[J]. Scientific Reports, 2016, 6: 26275.
[76] ROXWORTHY B J, TOUSSAINT K C. Femtosecond-pulsed plasmonic nanotweezers[J]. Scientific Reports, 2012, 2: 660.
[77] SHAKHOV A M, ASTAFIEV A A, PLUTENKO D O, et al. Femtosecond optical trap-assisted nanopatterning through microspheres by a single Ti∶Sapphire oscillator[J]. Journal of Physical Chemistry C, 2015, 119(22): 12562-12571.
[78] GU Bin, CAO Xi, RUI Guanghao, et al. Vector beams excited nonlinear optical effects[J]. Journal of Nonlinear Optical Physics & Materials, 2018, 27(4): 1850045.
[79] GONG Liping, ZHANG Xiaohe, GU Bing, et al. Optical pulling forces on rayleigh particles using ambient optical nonlinearity[J]. Nanophotonics, 2019, 8(6): 1117-1124.
[80] JIANG Yuqiang, NARUSHIMA T, OKAMOTO H. Nonlinear optical effects in trapping nanoparticles with femtosecond pulses[J]. Nature Physics, 2010, 6(12): 1005-1009.
[81] ZHANG Yuquan, SHEN Junfeng, MIN Changjun, et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams[J]. Nano Letters, 2018, 18(9): 5538-5543.
[82] CHEN Jun, NG J, LIN Zhifang, et al. Optical pulling force[J]. Nature Photonics, 2011, 5(9): 531-534.
[83] SAENZ J J. Optical forces laser tractor beams[J]. Nature Photonics, 2011, 5(9): 514-515.
[84] CUCHE A, STEIN B, CANAGUIER D A, et al. Brownian motion in a designer force field: dynamical effects of negative refraction on nanoparticles[J]. Nano Letters, 2012, 12(8): 4329-4332.
[85] RODRIGUEZ-FORTUNO F J, ENGHETA N, MARTINEZ A, et al. Lateral forces on circularly polarizable particles near a surface[J]. Nature Communications, 2015, 6: 10263.
[86] SUKHOV S, KAJORNDEJNUKUL V, NARAGHI R R, et al. Dynamic consequences of optical spin-orbit interaction[J]. Nature Photonics, 2015, 9(12): 809-812.
[87] WANG S B, CHAN C T. Lateral optical force on chiral particles near a surface[J]. Nature Communications, 2014, 5: 3307.
[88] ZHONG Mincheng, WEI Xunbin, ZHOU Jinhua, et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 2013, 4: 1768.
[89] ZHANG Yuquan, WU Xiaojing, MIN Changjun, et al. Engineered tumor cell apoptosis monitoring method based on dynamic laser tweezers[J]. Biomed Research International, 2014, 2014: 279408.
[90] WANG M D, YIN H, LANDICK R, et al. Stretching DNA with optical tweezers[J]. Biophysical Journal, 1997, 72(3): 1335-1346.
[91] PANG Yuanjie, GORDON R. Optical trapping of a single protein[J]. Nano Letters, 2012, 12(1): 402-406.
[92] SVEDBERG F, LI Zhipeng, XU Hongxing, et al. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation[J]. Nano Letters, 2006, 6(12): 2639-2641.
[93] SHEN Junfeng, WANG Jian, ZHANG Cuijiao, et al. Dynamic plasmonic tweezers enabled single-particle-film-system gap-mode surface-enhanced Raman scattering[J]. Applied Physics Letters, 2013, 103(19): 191119.
[94] SUN Qiuyue, ZHANG Yuquan, SUN Lixun, et al. Microscopic surface plasmon enhanced Raman spectral imaging[J]. Optics Communications, 2017, 392: 64-67.
[95] YANG Aiping, DU Luping, DOU Xiujie, et al. Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam[J]. Plasmonics, 2018, 13(3): 991-996.
[96] ZHANG Yuquan, SHEN Junfeng, XIE Zhenwei, et al. Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering[J]. Nanoscale, 2017, 9(30): 10694-10700.
[97] BRADAC C. Nanoscale optical trapping: a review[J]. Advanced Optical Materials, 2018, 6(12): 1800005.
[98] RAJEEVA B B, LIN Linhan, PERILLO E P, et al. High-resolution bubble printing of quantum dots[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16725-16733.
[99] MONTELONGO Y, YETISEN A K, BUTT H, et al. Reconfigurable optical assembly of nanostructures[J]. Nature Communications, 2016, 7: 12002.
[100] DO J, FEDORUK M, JACKEL F, et al. Two-color laser printing of individual gold nanorods[J]. Nano Letters, 2013, 13(9): 4164-4168.
[101] LIN Linhan, PENG Xiaolei, MAO Zhangming, et al. Bubble-pen lithography[J]. Nano Letters, 2016, 16(1): 701-708.
[102] SMALLEY D E, NYGAARD E, SQUIRE K, et al. A photophoretic-trap volumetric display[J]. Nature, 2018, 553(7689): 486-490.
[103] JURADO-SANCHEZ B, ESCARPA A. Milli, micro and nanomotors: novel analytical tools for real-world applications[J]. Trac-Trends in Analytical Chemistry, 2016, 84: 48-59.
[104] GALAJDA P, ORMOS P. Complex micromachines produced and driven by light[J]. Applied Physics Letters, 2001, 78(2): 249-251.
[105] QUINTO-SU P A. A microscopic steam engine implemented in an optical tweezer[J]. Nature Communications, 2014, 5: 5889.

相似文献/References:

[1]阮双琛,权润爱,张敏,等.反射式连续波太赫兹成像系统[J].深圳大学学报理工版,2010,27(1):6.
 RUAN Shuang-chen,QUAN Run-ai,ZHANG Min,et al.CW THz imaging constructions in reflection geometry[J].Journal of Shenzhen University Science and Engineering,2010,27(5):6.
[2]李学金,宋奎岩,洪学明,等.双空芯光子晶体光纤温度传感特性研究[J].深圳大学学报理工版,2010,27(1):28.
 LI Xue-jin,SONG Kui-yan,HONG Xue-ming,et al.Research on temperature characteristics of hollow dual-core liquid-filled photonic crystal fiber[J].Journal of Shenzhen University Science and Engineering,2010,27(5):28.
[3]杨毅彪,王云才,王拴锋,等.二维介质柱型graphite格子光子晶体禁带特性[J].深圳大学学报理工版,2010,27(2):157.
 YANG Yi-biao,WANG Yun-cai,WANG Shuan-feng,et al.The bandgap characteristics of two dimensional graphite lattice photonic crystals with dielectric rods[J].Journal of Shenzhen University Science and Engineering,2010,27(5):157.
[4]梁华伟,阮双琛,张敏,等.锥形纳米金属线太赫兹波聚焦特性研究[J].深圳大学学报理工版,2012,29(No.4(283-376)):300.[doi:10.3724/SP.J.1249.2012.04300]
 LIANG Hua-wei,RUAN Shuang-chen,ZHANG Min,et al.Study on the focusing characteristics of conical metal nanowires[J].Journal of Shenzhen University Science and Engineering,2012,29(5):300.[doi:10.3724/SP.J.1249.2012.04300]
[5]刘俊星,索鹏,傅吉波,等.基于VO2相变实现太赫兹波段宽带抗反射[J].深圳大学学报理工版,2019,36(2):189.[doi:10.3724/SP.J.1249.2019.02189]
 LIU Junxing,SUO Peng,et al.Broad band antireflection in terahertz band based on vanadium dioxide phase transition[J].Journal of Shenzhen University Science and Engineering,2019,36(5):189.[doi:10.3724/SP.J.1249.2019.02189]
[6]赵晓丹,王同林,张明达,等.一维光子晶体无序膜厚扰动的分析及优化[J].深圳大学学报理工版,2020,37(1):44.[doi:10.3724/SP.J.1249.2020.01044]
 ZHAO Xiaodan,WANG Tonglin,ZHANG Mingda,et al.Experimental analysis and compensation method of one-dimensional photonic crystal with disordered film thickness perturbation[J].Journal of Shenzhen University Science and Engineering,2020,37(5):44.[doi:10.3724/SP.J.1249.2020.01044]

备注/Memo

备注/Memo:
Received:2020-02-27;Accepted:2020-05-18
Foundation:National Natural Science Foundation of China (91750205, 61935013, 61975128)
Corresponding author:Professor YUAN Xiaocong.E-mail: xcyuan@szu.edu.cn
Citation:MIN Changjun,YUAN Yunqi,ZHANG Yuquan,et al.The hand of light for micro/nano-particle manipulation: research progress of optical tweezers[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(5): 441-458.(in Chinese)
基金项目:国家自然科学基金资助项目(91750205, 61935013, 61975128)
作者简介:闵长俊(1981—),深圳大学特聘教授、博士生导师.研究方向:微纳光学.E-mail:cjmin@szu.edu.cn
袁运琪(1994—),深圳大学硕士研究生.研究方向:光镊技术.E-mail:1810285003@email.szu.edu.cn
闵长俊、袁运琪为共同第一作者.
引文:闵长俊,袁运琪,张聿全,等.操纵微纳颗粒的“光之手”——光镊技术研究进展[J]. 深圳大学学报理工版,2020,37(5): 441-458.
更新日期/Last Update: 2020-07-26