[1]董必钦,刘静宜,林琛,等.粉煤灰复合水泥基材料的孔结构反演模型分析[J].深圳大学学报理工版,2020,37(4):389-394.[doi:10.3724/SP.J.1249.2020.04389]
 DONG Biqin,LIU Jingyi,LIN Chen,et al.Inverse model of capillary pore distribution of fly ash mixed cement materials[J].Journal of Shenzhen University Science and Engineering,2020,37(4):389-394.[doi:10.3724/SP.J.1249.2020.04389]
点击复制

粉煤灰复合水泥基材料的孔结构反演模型分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第4期
页码:
389-394
栏目:
土木建筑工程
出版日期:
2020-07-15

文章信息/Info

Title:
Inverse model of capillary pore distribution of fly ash mixed cement materials
文章编号:
202004008
作者:
董必钦刘静宜林琛张健超洪舒贤
深圳大学土木与交通工程学院,广东深圳 518060
Author(s):
DONG Biqin LIU Jingyi LIN Chen ZHANG Jianchao and HONG Shuxian
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
建筑材料水泥孔结构毛细吸收反演模型X射线计算机断层扫描
Keywords:
building materials cement pore structure capillary absorption inverse model X-ray computed tomography
分类号:
TU528
DOI:
10.3724/SP.J.1249.2020.04389
文献标志码:
A
摘要:
为研究水泥基材料内的孔结构,基于Lucas-Washburn方程,提出考虑分形维数的毛细孔分布反演模型.应用X射线计算机断层扫描技术无损表征水泥基材料的毛细吸收过程,通过分布曲线推断出样品的孔径分布,通过劈开试验及滴定试验验证了该技术的可行性.将该模型应用于粉煤灰质量分数为10%的水泥基复合材料中,结果表明,毛细管孔径越大,毛细管内水上升得越快,在毛细管吸水的早期阶段,毛细管内水上升的高度较大.由模型推导出累积孔径分布,将所得结果与压汞法测得的累积孔体积进行比较,相关度为0.942 6,证明了反演模型的准确性.
Abstract:
In order to study the pore structure of cementitious materials, an inverse model of the capillary distribution considering fractal dimension is proposed based on the Lucas-Washburn equation. X-ray computed tomography (XCT) is used to characterize the capillary absorption process non-destructively. The pore size distribution is inferred from the water content distribution, and the feasibility of the technique is verified by the split test and titration test. The model is applied to the cementitious materials with 10% fly ash. The results show that the larger the capillary pore diameter, the faster the water in the capillary rises, and in the early stage of capillary water absorption, the higher the water in capillary rises. The cumulative pore size distribution is derived from the model, and the correlation between the results and the cumulative pore volume measured by the mercury intrusion porosimetry is 0.942 6, which proves the accuracy of the inverse model.

参考文献/References:

[1] HONG S, YAO W, GUO B, et al. Water distribution characteristics in cement paste with capillary absorption[J]. Construction and Building Materials, 2020, 240:117767.
[2] LIU C, WANG F, ZHANG M. Modelling of 3D microstructure and effective diffusivity of fly ash blended cement paste[J]. Cement and Concrete Composites, 2020, 110:103586.
[3] MORETTI J P, SALES A, QUARCIONI V A, et al. Pore size distribution of mortars produced with agroindustrial waste[J]. Journal of Cleaner Production, 2018, 187(20):473-484.
[4] ZHANG J, LIN C, DONG B, et al. Inverse modeling deduction of pore distribution in cement materials from capillary absorption features[J]. Cement and Concrete Composites, 2020, 109:103557.
[5] JI Y, PEL L, SUN Z. The microstructure development during bleeding of cement paste: an NMR study[J]. Cement and Concrete Research, 2019, 125:105866.
[6] WENZEL O, SCHWOTZER M, MULLER E, et al. Investigating the pore structure of the calcium silicate hydrate phase[J]. Materials Characterization, 2017, 133:133-137.
[7] ZENG Q, WANG X, YANG P, et al. Tracing mercury entrapment in porous cement paste after mercury intrusion test by X-ray computed tomography and implications for pore structure characterization[J]. Materials Characterization, 2019, 151:203-215.
[8] CLARKSON C R, SOLANO N R, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103:606-616.
[9] HANZIC L, KOSEC L A. Capillary absorption in concrete and the Lucas-Washburn equation[J]. Cement and Concrete Composites, 2010, 32(1):84-91.
[10] GUMMERSON R J, HALL C, HOFF W D, The suction rate and the sorptivity of brick[J]. British Ceramic Society, 1981, 80(5):150-152.
[11] HOFFMANN D, NIESEL K. Quantifying capillary rise in columns of porous material[J]. American Ceramic Society Bulletin, 1988, 67(8):14-18.
[12] 董必钦,郭邦文,刘昱清,等.水泥净浆水分传输过程可视化表征与定量分析[J].深圳大学学报理工版,2018,35(3):285-291.
DONG Biqin, GUO Bangwen, LIU Yuqing, et al. Visualization and quantitative analysis of water transport evolution in cementitious materials[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(3): 285-291. (in Chinese)
[13] 刘昱清,董鹏,滕晓娟,等.基于X-ray μCT技术的钢筋锈胀特征分析[J].深圳大学学报理工版,2017,34(6):618-624.
LIU Yuqing, DONG Peng, TENG Xiaojuan, et al. Characterization of corrosion expansion feature of steel bar by means of X-ray μCT[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(6): 618-624.(in Chinese)
[14] 洪舒贤,郑帆,史桂昀,等.钢筋通电锈蚀过程电流有效性分析[J].深圳大学学报理工版,2019,36(1):94-100.
HONG Shuxian, ZHENG Fan, SHI Guiyun, et al. Investigation on current effectiveness in the process of current accelerated corrosion of reinforcing steel[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(1): 94-100.(in Chinese)
[15] 滕晓娟,刘昱清,刘鹏,等.弯曲荷载诱发微型梁开裂演化过程的可视分析[J].深圳大学学报理工版,2018,35(5):460-466.
TENG Xxiaojuan, LIU Yuqing, LIU Peng, et al. Visual analysis for cracking evolution of micro-beam under three-point bending[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(5): 460-466.(in Chinese)
[16] CAI J, YU B. A discussion of the effect of tortuosity on the capillary imbibition in porous media[J]. Transport in Porous Media, 2011, 89(2):251-263.
[17] YANG X, ZHANG R, MA S, et al. Fractal dimension of concrete meso-structure based on X-ray computed tomography[J]. Powder Technology, 2019, 350(15):91-99.
[18] YU B, CHENG P. A fractal permeability model for bi-dispersed porous media[J]. International Journal of Heat and Mass Transfer, 2002, 45(14):2983-2993.
[19] TAYLOR S C, HOFF W D, WILSON M A, et al. Anomalous water transport properties of Portland and blended cement-based materials[J]. Journal of Materials Science Letters, 1999, 18(23):1925-1927.
[20] HAMDAN M O, ABU-NABAH B A. Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 57:449-460.

相似文献/References:

[1]张亚芳,陈江平.不同掺量玻璃纤维增强水泥细观数值研究[J].深圳大学学报理工版,2010,27(1):103.
 ZHANG Ya-fang and CHEN Jiang-ping.Numerical study on glass fiber reinforced cement with different incorporation rates[J].Journal of Shenzhen University Science and Engineering,2010,27(4):103.
[2]刘贤淼,江泽慧,费本华.玻璃纤维布增强造纸脱墨污泥纤维板性能研究[J].深圳大学学报理工版,2012,29(No.4(283-376)):371.[doi:10.3724/SP.J.1249.2012.04371]
 LIU Xian-miao,JIANG Ze-hui,and FEI Ben-hua.Paper deinking sludge fiberboard reinforced by fiberglass fabric[J].Journal of Shenzhen University Science and Engineering,2012,29(4):371.[doi:10.3724/SP.J.1249.2012.04371]
[3]付晔,李庆华,徐世烺.高温后纳米改性水泥基材料的残余抗折强度[J].深圳大学学报理工版,2014,31(2):187.[doi:10.3724/SP.J.1249.2014.02187]
 Fu Ye,Li Qinghua,and Xu Shilang.The effects of high temperature on flexural strengths of high performance nano-modified cementitious composites[J].Journal of Shenzhen University Science and Engineering,2014,31(4):187.[doi:10.3724/SP.J.1249.2014.02187]
[4]彭家惠,刘先锋,张建新,等.磷酸盐对α半水脱硫石膏凝结硬化的作用机理[J].深圳大学学报理工版,2014,31(4):388.[doi:10.3724/SP.J.1249.2014.04388]
 Peng Jiahui,Liu Xianfeng,Zhang Jianxin,et al.Mechanisms of phosphate on the hydration and hardening of α-hemihydrate desulfurization gypsum[J].Journal of Shenzhen University Science and Engineering,2014,31(4):388.[doi:10.3724/SP.J.1249.2014.04388]
[5]倪卓,邢锋,石开勇,等.微胶囊对水泥自修复复合材料微观结构的影响[J].深圳大学学报理工版,2015,32(1):68.[doi:10.3724/SP.J.1249.2015.01068]
 Ni Zhuo,Xing Feng,Shi Kaiyong,et al.Influence of microcapsule on microcosmic structure of self-healing cementitious composite[J].Journal of Shenzhen University Science and Engineering,2015,32(4):68.[doi:10.3724/SP.J.1249.2015.01068]
[6]童芸芸,叶良,马超.钢筋腐蚀产物实时检测的再钝化机理分析[J].深圳大学学报理工版,2017,34(1):75.[doi:10.3724/SP.J.1249.2017.01075]
 Tong Yunyun,Ye Liang,and Ma Chao.Real time analysis on repassivation mechanism of steel rebar corrosion products[J].Journal of Shenzhen University Science and Engineering,2017,34(4):75.[doi:10.3724/SP.J.1249.2017.01075]
[7]刘昱清,董鹏,滕晓娟,等.基于X-ray μCT技术的钢筋锈胀特征分析[J].深圳大学学报理工版,2017,34(6):618.[doi:10.3724/SP.J.1249.2017.06618]
 Liu Yuqing,Dong Peng,Teng Xiaojuan,et al.Characterization of corrosion expansion feature of steel bar by means of X-ray μCT[J].Journal of Shenzhen University Science and Engineering,2017,34(4):618.[doi:10.3724/SP.J.1249.2017.06618]
[8]丁铸,孙晨,戴梦希.磷酸盐水泥砂浆作为锚固胶的性能研究[J].深圳大学学报理工版,2018,35(2):132.[doi:10.3724/SP.J.1249.2018.02132]
 DING Zhu,SUN Chen,and DAI Mengxi.Properties of phosphate cement mortar as an anchorage adhesive[J].Journal of Shenzhen University Science and Engineering,2018,35(4):132.[doi:10.3724/SP.J.1249.2018.02132]
[9]刘斌清,仵江涛,陈华鑫,等.多聚磷酸改性沥青的路用性能及机理分析[J].深圳大学学报理工版,2018,35(3):292.[doi:10.3724/SP.J.1249.2018.03292]
 LIU Binqing,WU Jiangtao,et al.Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J].Journal of Shenzhen University Science and Engineering,2018,35(4):292.[doi:10.3724/SP.J.1249.2018.03292]
[10]董必钦,郭邦文,刘昱清,等.水泥净浆水分传输过程可视化表征与定量分析[J].深圳大学学报理工版,2018,35(3):285.[doi:10.3724/SP.J.1249.2018.03285]
 DONG Biqin,GUO Bangwen,LIU Yuqing,et al.Visualization and quantitative analysis of water transport evolution in cementitious materials[J].Journal of Shenzhen University Science and Engineering,2018,35(4):285.[doi:10.3724/SP.J.1249.2018.03285]
[11]刘建,刘派,丁铸.磷酸盐基矿聚物材料的制备与机理研究[J].深圳大学学报理工版,2020,37(6):597.[doi:10.3724/SP.J.1249.2020.06597]
 LIU Jian,LIU Pai,and DING Zhu.Preparation and mechanism of phosphate based geopolymer[J].Journal of Shenzhen University Science and Engineering,2020,37(4):597.[doi:10.3724/SP.J.1249.2020.06597]

备注/Memo

备注/Memo:
Received:2019-11-01;Accepted:2020-02-22
Foundation:National Natural Science Foundation of China (51727813, 51478270, U1801254)
Corresponding author:Professor HONG Shuxian.E-mail: sxhong@szu.edu.cn
Citation:DONG Biqin,LIU Jingyi,LIN Chen,et al.Inverse model of capillary pore distribution of fly ash mixed cement materials[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(4): 389-394.(in Chinese)
基金项目:国家自然科学基金资助项目(51727813,51478270,U1801254)
作者简介:董必钦(1975—),深圳大学教授.研究方向:水泥基材料.E-mail:incise@szu.edu.cn
引文:董必钦,刘静宜,林琛,等.粉煤灰复合水泥基材料的孔结构反演模型分析[J]. 深圳大学学报理工版,2020,37(4):389-394.
更新日期/Last Update: 2020-07-26