参考文献/References:
[1] SUSUMU T, HIROFUMI T, TADASHI H, et al. Liquefaction at a housing site reclaimed using well-graded gravelly soil[J]. Japanese Geotechnical Journal, 2010, 5(2):377-390.
[2] 李培河, 戚承志. 成层地基中不同土层分布对地下结构的抗震影响[J].解放军理工大学学报自然科学版, 2014, 15(5): 457-461.
LI Peihe, QI Chengzhi. Effect of different soil layer distribution on seismic response of underground structure in layered foundation [J]. Journal of PLA University of Science and Technology Natural Science, 2014, 15(5): 457-461.(in Chinese)
[3] LUAN M T, ZHANG X L, YANG Q, et al. Numerical analysis of liquefaction of porous seabed around pipeline fixed in space under seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(5): 855-864.
[4] VESSIA G, VENISTI N. Liquefaction damage potential for seismic hazard evaluation in urbanized areas[J]. Soil Dynamic and Earthquake Engineering, 2013, 31(8): 1094-1105.
[5] 庄海洋, 龙慧, 陈国兴, 等. 可液化地基中地铁车站周围场地地震反应分析[J].岩土工程学报, 2012, 34(1): 81-88.
ZHUANG Haiyang, LONG Hui, CHEN Guoxing, et al. Seismic responses of surrounding site of subway station in liquefiable foundation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 81-88.(in Chinese)
[6] 刘华北, 宋二祥. 埋深对地下结构地震液化响应的影响[J]. 清华大学学报自然科学版, 2005, 45(3):301-305.
LIU Huabei, SONG Erxiang. Effects of burial depth on the liquefaction response of underground structures during an earthquake excitation[J]. Journal of Tsinghua University Science and Technology, 2005, 45(3): 301-305.(in Chinese)
[7] 李长青. 地下结构埋深对结构自身响应的影响分析[J]. 防灾减灾工程学报,2011, 31(增刊): 2011:171-176.
LI Changqing. Analysis of the effect of buried depth on the response of underground structure[J]. Journal of Disaster Prevention and Mitigation Engineering, 2011,31(Supply): 2011:171-176.(in Chinese)
[8] 林利民, 陈健云. 软土中浅埋地铁车站结构的抗震性能分析[J]. 防灾减灾工程学报, 2006, 26(3):268-273.
LIN Limin, CHEN Jianyun. Analysis of earthquake-resistant capacity of shallow-buried subway station structures in soft soil[J]. Journal of Disaster Prevention and Mitigation Engineering, 2006, 26(3): 268-273.(in Chinese)
[9] 庄海洋. 土-地下结构非线性动力相互作用及其大型振动台试验研究[D]. 南京:南京工业大学,2006.
ZHUANG Haiyang. Study on nonlinear dynamic soil-underground structure interaction and its large-size shaking table test[D]. Nanjing: Nanjing Technology University, 2006.(in Chinese)
[10] 董正方,蔡宝占,姚毅超, 等.反应加速度法和反应位移法精度随结构埋深变化的研究[J]. 振动与冲击, 2017, 36(14): 216-220.
DONG Zhengfang, CAI Baozhan, YAO Yichao, et al. Accuracy of the response acceleration method and response displacement method considering different imbedding depths of underground structures[J]. Journal of Vibration and Shock, 2017, 36(14): 216-220.(in Chinese)
[11] 刘晶波, 李彬. Rayleigh波作用下地下结构的动力反应分析[J]. 工程力学, 2006, 23(10):132-135.
LIU Jingbo, LI Bin. Dynamic response analysis of underground structures during propagation of Rayleigh waves[J]. Engineering Mechanics, 2006, 23(10):132-135.(in Chinese)
[12] 王苏, 路德春, 杜修力. 地下结构地震破坏静-动力耦合模拟研究[J]. 岩土力学, 2012, 33(11):288-293.
WANG Su, LU Dechun, DU Xiuli. Research on underground structure seismic damage using static-dynamic coupling simulation method[J]. Rock and Soil Mechanics, 2012, 33(11):288-293.(in Chinese)
[13] LI L. Using numerical simulation to determine the seismic response of coastal underground structures in saturated soil deposits[J]. Journal of Coastal Research, 2017, 33(3): 583-595.
[14] HU J, CHEN Q, LIU H. Relationship between earthquake-induced uplift of rectangular underground structures and the excess pore water pressure ratio in saturated sandy soils[J]. Tunnelling and Underground Space Technology, 2018, 79:35-51.
[15] HU J L, LIU H B. The uplift behavior of a subway station during different degree of soil liquefaction[J]. Procedia Engineering, 2017, 189:18-24.
[16] CHIAN S C, MADABHUSHI S P G. Effect of buried depth and diameter on uplift of underground structures in liquefied soils[J]. Soil Dynamics and Earthquake Engineering, 2012, 41:181-190.
[17] LIU H, SONG E. Seismic response of large underground structures in liquefiable soils subjected to horizontal and vertical earthquake excitations[J]. Computers and Geotechnics, 2005, 32(4):223-244.
[18] AZADI M, HOSSEINI S M M M. The uplifting behavior of shallow tunnels within the liquefiable soils under cyclic loadings[J]. Tunnelling and Underground Space Technology, 2010, 25(2): 158-167.
[19] PITILAKIS K, TSINIDIS G, LEANZA A, et al. Seismic behaviour of circular tunnels accounting for above ground structures interaction effects[J]. Soil Dynamics and Earthquake Engineering, 2014, 67:1-15.
[20] YANG Z H, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003, 129(12): 1119-1127.
相似文献/References:
[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(3):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(3):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(3):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(3):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(3):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(3):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(3):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(3):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(3):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(3):501.[doi:10.3724/SP.J.1249.2017.05501]