TONG Shen,LIU Hongji,and WANG Ke.Three-photon microscopy imaging of adeno-associated viral labeled neurons[J].Journal of Shenzhen University Science and Engineering,2020,37(1):39-43.[doi:10.3724/SP.J.1249.2020.01039]





Three-photon microscopy imaging of adeno-associated viral labeled neurons
TONG Shen LIU Hongji and WANG Ke
College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
optical engineering three-photon microscopy imaging brain injection adeno-associated virus hippocampus neurons acute brain slice three-photon fluorescence third harmonic generation
1 700 nm波段三光子荧光成像已成为研究神经细胞的重要手段,但该技术仅能在转基因小鼠中对荧光蛋白标记的神经细胞成像,无法对普通小鼠的脑部神经细胞成像. 结合1 700 nm波段三光子显微成像技术和脑部注射神经细胞标记技术,对普通小鼠急性脑切片中的神经细胞进行三光子荧光成像. 结果表明,脑部注射腺相关病毒(AAV9-hSyn-NES-jRGECO1a-WPRE)能够标记普通小鼠灰质和海马体中的神经细胞. 三光子荧光成像再现了普通小鼠脑片中灰质和海马体神经细胞形态. 同时采集的三次谐波图像实现了普通小鼠脑片内白质等结构的无标记成像,且神经细胞位置处的三光子荧光和三次谐波图像呈互补关系. 1 700 nm波段的三光子显微成像技术,结合脑部注射腺相关病毒神经细胞标记技术,可为神经脑科学研究提供一种新颖的成像手段.
Recently, it has been demonstrated that three-photon fluorescence microscopy excited at 1 700 nm window provides a novel technique for imaging neurons. However, this technique can only be used for genetically modified mice rather than ordinary mice, because neurons from genetically modified mice express fluorescent proteins. In this paper, combining brain injection and three-photon fluorescence microscopy, we image neurons in acute brain slices of ordinary mice. The experimental results show that injection of adeno-associated virus (AAV9-hSyn-NES-jRGECO1a-WPRE) can be used to label neurons in the brain of normal mice. Three-photon fluorescence microcopy can reconstruct the neurons morphology of both the grey matter and hippocampus in common mouse brain slices. The simultaneously acquired label-free third-harmonic image shows the white matter, and is complementary to three-photon fluorescence image in neurons. Three-photon microimaging at 1 700 nm, combined with brain injection of adeno-associated virus, provides a new helpful method for neural brain research.


[1] HELMCHENH F, DENK W. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12): 932-940.
[2] OUZOUNOV D G, WANG Tianyu, WANG Mengran, et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain[J]. Nature Methods, 2017, 14(4): 388-390.
[3] WANG Tianyu, OUZOUNOV D G, WU Chunyan, et al. Three-photon imaging of mouse brain structure and function through the intact skull[J]. Nature Methods, 2018, 15(10): 789-792.
[4] DOMBECK D A, HARVEY C D, TIAN Lin, et al. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation[J]. Nature Neuroscience, 2010, 13(11): 1433-1440.
[5] BUSCHE M A, CHEN Xiaowei, HENNING H A, et al. Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(22): 8740-8745.
[6] LOW R J G Y, TANK D W. Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(52): 18739-18744.
[7] WITTE S, NEGREAN A, LODDER J C, et al. Label-free live brain imaging and targeted patching with third-harmonic generation microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 5970-5975.
[8] BARRETTO R P, KO T H, JUNG J C, et al. Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy[J]. Nature Medicine, 2011, 17(2): 223-228.
[9] LIEBSCHER S, MEYER-LUEHMANN M. A peephole into the brain: neuropathological features of Alzheimer’s disease revealed by in vivo two-photon imaging[J]. Frontiers in Psychiatry, 2012, 3(26): 1-11.
[10] CHEN Xiaowei, LEISCHNER U, ROCHEFORT N L, et al. Functional mapping of single spines in cortical neurons in vivo[J]. Nature, 2011, 475(7357): 501-505.
[11] MITTMANN W, WALLACE D J, CZUBAYKO U, et al. Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo[J]. Nature Neuroscience, 2011, 14(8): 1089-1093.
[12] HORTON N G, WANG K, KOBAT D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3): 205-209.
[13] LIU Hongji, DENG Xiangquan, TONG Shen, et al. In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots[J]. Nano Letters, 2019, 19(8): 5260-5265.
[14] TONG Shen, LIU Hongji, CHENG Hui, et al. Deep-brain three-photon microscopy excited at 1600 nm with silicone oil immersion[J]. Journal of Biophotonics, 2019, 12(6): e201800423.
[15] WANG Ke, HORTON N G, CHARAN K, et al. Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(2): 6800311.
[16] YUN S H, XIA Likai, EDISON T N, et al. Highly selective fluorescence turn-on sensor for Cu2+ ions and its application in confocal imaging of living cells[J]. Sensors and Actuators B: Chemical, 2017, 240: 988-995.
[17] KEMPSKI K M, WIACEK A, GRAHAM M, et al. In vivo photoacoustic imaging of major blood vessels in the pancreas and liver during surgery[J]. Journal of Biomedical Optics, 2019, 24(12): 1-12.
[18] JIA Y L, BAILEY S T, HWANG T S, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): E2395-E2402.
[19] KWONG K K, BELLIVEAU J W, CHESLER D A, et al. Dynamic magnetic-resonance-imaging of human brain activity during primary sensory stimulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(12): 5675-5679.
[20] PAPOUIN T, HAYDON P G. Obtaining acute brain slices[J]. Bio-ptotocol, 2018, 8(2): e2699.
[21] DANA H, MOHAR B, SUN Yi, et al. Sensitive red protein calcium indicators for imaging neural activity[J]. Elife, 2016, 5(24): e12727.
[22] FARRAR M J, WISE F W, FETCHO J R. In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy[J]. Biophysical Journal, 2011, 100(5): 1362-1371.


 LI Chun-bo,YU Chun-hui,CHAI Jin-long,et al.Modal analysis through numerical and experimental methods for rotating mirror of ultra-high speed camera[J].Journal of Shenzhen University Science and Engineering,2011,28(1):513.
 LI Chun-bo,YU Chun-hui,LI Jing-zhen,et al.Structure design of rotating mirror based on the topology optimization theory for ultra-high speed camera[J].Journal of Shenzhen University Science and Engineering,2012,29(1):304.[doi:10.3724/SP.J.1249.2012.04304]
 Lei Yaohu,Liu Xin,Guo Jinchuan,et al.Influence of ultrasonic on filling ratio of Bi in X-ray analyzer gratings[J].Journal of Shenzhen University Science and Engineering,2016,33(1):138.[doi:10.3724/SP.J.1249.2016.02138]
 Lei Yaohu,Huang Jianheng,Liu Xin,et al.Improvement of visibility of moiré fringe in X-ray differential phase-contrast imaging[J].Journal of Shenzhen University Science and Engineering,2016,33(1):506.[doi:10.3724/SP.J.1249.2016.05506]
[5]王冬冬,谢晓华,任席奎,等.1 764 nm调Q锁模自拉曼激光器研究[J].深圳大学学报理工版,2016,33(5):501.[doi:10.3724/SP.J.1249.2016.05501]
 Wang Dongdong,Xie Xiaohua,Ren Xikui,et al.Study on Q-switched and mode-locked self-Raman laser at 1 764[J].Journal of Shenzhen University Science and Engineering,2016,33(1):501.[doi:10.3724/SP.J.1249.2016.05501]
 Huang Jianheng,Lei Yaohu,Liu Xin,et al.Numerical analysis of shift error in X-ray phase contrast imaging for large field of view[J].Journal of Shenzhen University Science and Engineering,2017,34(1):8.[doi:10.3724/SP.J.1249.2017.01008]
 Hong Zhenhou,Zhou Bin,and Guo Jinchuan.A new filter function for the image reconstruction of cone beam X-ray CT[J].Journal of Shenzhen University Science and Engineering,2017,34(1):284.[doi:10.3724/SP.J.1249.2017.03284]
 Liu Wei,Liu Shuanglong,Chen Danni,et al.Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy[J].Journal of Shenzhen University Science and Engineering,2017,34(1):272.[doi:10.3724/SP.J.1249.2017.03272]
 Li Heng,Chen Danni,et al.Application of DH-PSF three-dimensional dynamic multi-particle tracking method in living cell imaging[J].Journal of Shenzhen University Science and Engineering,2017,34(1):526.[doi:10.3724/SP.J.1249.2017.05526]
 ZHANG Ying,ZHENG Jilin,QI Hongji,et al.Design and research of steep side of the multi-layer dielectric thin films[J].Journal of Shenzhen University Science and Engineering,2018,35(1):484.[doi:10.3724/SP.J.1249.2018.05484]


Foundation:Key Project of Department of Education of Guangdong Province (2017KZDXM073); China Postdoctoral Science Foundation (2019M653025)
Corresponding author:Professor WANG Ke. E-mail: kewangfs@szu.edu.cn
Citation:TONG Shen, LIU Hongji, WANG Ke. Three-photon microscopy imaging of adeno-associated viral labeled neurons[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(1): 39-43.(in Chinese)
基金项目:广东省教育厅省级重大研究资助项目(2017KZDXM 073);中国博士后科学基金资助项目(2019M653025)
作者简介:仝申(1991—),深圳大学博士研究生. 研究方向:生物光子学. E-mail:1456689864@qq.com
引文:仝申,刘鸿吉,王 科. 腺相关病毒标记神经细胞的三光子显微成像[J]. 深圳大学学报理工版,2020,37(1):39-43.
更新日期/Last Update: 2020-01-30