[1]赵静,吴旺杰,王选仓,等.基于等维灰数递补模型的路面性能预测方法[J].深圳大学学报理工版,2019,36(6):628-634.[doi:10.3724/SP.J.1249.2019.06628]
 ZHAO Jing,WU Wangjie,WANG Xuancang,et al.Prediction method of pavement performance based on same dimension gray recurrence dynamic model[J].Journal of Shenzhen University Science and Engineering,2019,36(6):628-634.[doi:10.3724/SP.J.1249.2019.06628]
点击复制

基于等维灰数递补模型的路面性能预测方法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年第6期
页码:
628-634
栏目:
土木建筑工程
出版日期:
2019-11-20

文章信息/Info

Title:
Prediction method of pavement performance based on same dimension gray recurrence dynamic model
文章编号:
201906005
作者:
赵静1吴旺杰1王选仓1李善强12房娜仁1邓瑞祥1
1)长安大学公路学院,陕西西安 710064
2)广东华路交通科技有限公司,广东广州 510420
Author(s):
ZHAO Jing1 WU Wangjie1 WANG Xuancang1 LI Shanqiang1 2 FANG Naren1 and DENG Ruixiang1
1) School of Highway, Chang’an University, Xi’an 710064, Shaanxi Province, P.R.China
2) Guangdong Hua Lu Transportation Technology Co.Ltd., Guangzhou 510420, Guangdong Province, P.R.China
关键词:
道路工程灰色GM(1 1)模型等维灰数递补模型路面使用性能性能预测精度
Keywords:
road engineering grey GM(11) model same dimension gray recurrence dynamic model pavement usage performance performance prediction precision
分类号:
U416.2
DOI:
10.3724/SP.J.1249.2019.06628
文献标志码:
A
摘要:
为了准确掌握沥青路面使用性能指标的变化趋势,以车辙指数(rutting depth index, RDI)为例提出了能够有效动态使用新数据的等维灰数递补模型.利用该模型对路面状况指数(pavement condition index, PCI)、行驶质量指数(riding quality index, RQI)和横向力指数(skidding resistance index, SRI)等指标进行了预测. 结果表明,使用等维灰数递补模型对RDI、PCI、RQI和SRI预测在第3步时,最小误差概率均为1,后验方差比分别为0.1117、0.0654、0.2018和0.1130. 证明了随着步数的增加,其预测结果精度越高、误差越小,表明该方法能够准确地预测路面性能.
Abstract:
In order to accurately grasp the change trend of asphalt pavement performance index, taking the rutting depth index (RDI) as an example, we establish a gray recurrence dynamic model with equivalent dimension which can use the new data effectively and dynamically. The model is used to predict the indexes such as pavement condition index (PCI), driving quality index (RQI) and skidding resistance index (SRI). The results show that in step 3, the minimum error probabilities of RDI, PCI, RQI and SRI are all 1, and the posterior prescription variance ratios are: 0.111 7, 1, 0.065 4, 1, 0.201 8,and 0.113 0, respectively. It is proved that with the increase of recursive steps, the accuracy of the prediction result of the model becomes higher, and the error becomes less, which shows that the method can accurately predict the road performance.

参考文献/References:

[1] 交通运输部. 2018年交通运输行业发展统计公报[N]. 中国交通报,2019-04-12.
Ministry of Transport.Development and statistics bulletin of transportation industry in 2018 [J]. China Traffic News, 2019-04-12.(in Chinese)
[2] 赵静,王选仓,丁龙亭,等. 基于灰色关联度分析和支持向量机回归的沥青路面使用性能预测[J]. 重庆大学学报,2019,42(4):72-81.
ZHAO Jing, WANG Xuancang, DING Longting. et al. Performance prediction of asphalt pavement based on grey relational analysis and support vector machine regression[J]. Journal of Chongqing University, 2019,42(4):72-81.(in Chinese)
[3] 苏卫国,李绍杰. 应用灰色马尔科夫模型预测路面使用性能[J]. 筑路机械与施工机械化,2017,34(4):113-117.
SU Weiguo, LI Shaojie. Application of grey-markov model in prediction of pavement performance[J]. Journal of Road Building Machinery and Construction Mechanization, 2017, 34(4):113-117.(in Chinese)
[4] KARGAH-OSTADI N, STOFFELS S M, TABATABAEE N. Network-level pavement roughness prediction model for rehabilitation recommendations[J]. Transportation Research Record, 2010, 2155(1): 124-133.
[5] 陈仕周,李山,熊峰,等. 基于GA-灰色神经网络的沥青路面使用性能预测[J]. 重庆交通大学学报自然科学版,2019,38(2):44-50.
CHEN Shizhou, LI Shan, XIONG Feng, et al. Forecasting of asphalt pavement performance based on GA-gray neural network[J]. Journal of Chongqing Jiaotong University Natural Science, 2019,38(2):44-50.(in Chinese)
[6] 王昌衡,柏理想,邓珊. 基于熵权组合预测与粗糙模糊集的沥青路面使用性能分析[J]. 公路交通科技,2016,33(4):12-19.
WANG Changheng, BAI Lixiang, DENG Shan. Analysis of asphalt pavement performance based on entropy weight combination forecast and rough fuzzy set[J]. Highway Transportation Technology, 2016, 33(4):12-19.(in Chinese)
[7] 周岚. 高速公路沥青路面使用性能评价及预测研究[D]. 南京:东南大学,2015.
ZHOU Lan. Research of performance evaluation and prediction method of asphalt pavement for highway[D]. Nanjing: Southeast University, 2015.(in Chinese)
[8] 李丽,李西灿. 灰色GM(1,1)模型优化算法及应用[J]. 统计与决策,2019(13):77-81.
LI Li, LI Xichan. Optimization and application of GM(1,1) gray model algorithm[J]. Statistics & Decision, 2019(13):77-81.(in Chinese)
[9] 唐鸿远,张臻,邓运来,等. 基于灰色系统理论的Al-Zn-Mg合金板材疲劳寿命预测[J]. 上海交通大学学报自然科学版,2018,52(2):228-232.
TANG Hongyuan, ZHANG Zhen, DENG Yunlai, et al. Prediction for fatigue life of Al-Zn-Mg alloy based on grey system theory[J]. Journal of Shanghai Jiaotong University Natural Science, 2018, 52(2):228-232.(in Chinese)
[10] 刘思峰,杨英杰. 灰色系统研究进展(2004—2014)[J]. 南京航空航天大学学报,2015,47(1):1-18.
LIU Sifeng, YANG Yingjie. Advances in grey system research (2004-2014)[J]. Journal of Nanjing Aeronautics and Astronautics University, 2015, 47(1):1-18.(in Chinese)
[11] 孙志伟,邬晓光. 基于长期损失灰色预测的竖向预应力控制[J]. 武汉大学学报工学版,2017,50(1):120-124.
SUN Zhiwei, WU Xiaoguang. Stress under anchor controlling in vertical prestress from long-term loss by gray prediction[J]. Journal of Wuhan University Engineering, 2017, 50(1):120-124.(in Chinese)
[12] 李育枢, 高广运, 凌辉. 单桩竖向抗拔极限承载力的灰色预测方法[J]. 地下空间与工程学报,2005(2):209-213.
LI Yushu, GAO Guangyun, LING Hui. Prediction method for uplift ultimate bearing capacity of single pile[J]. Chinese Journal of Underground Space and Engineering, 2005(2):120-213. (in Chinese)
[13] 高连生,易诞,毛娜,等. 基于改进的GM(1,1)的长期交通量预测模型[J]. 铁道科学与工程学报,2015,12(1):203-207.
GAO Liansheng, YI Dan, MAO Na, et al. A forecast model for long-term traffic volume based on improved GM(1,1) model[J]. Journal of Railway Science and Engineering, 2015, 12(1):203-207.(in Chinese)

相似文献/References:

[1]栗振锋,张敏.FWD动载下的横观各向同性路基动力响应分析[J].深圳大学学报理工版,2013,30(No.2(111-220)):195.[doi:10.3724/SP.J.1249.2013.02195]
 Li Zhenfeng and Zhang Min.The analysis of dynamic response of transversely isotropic subgrade based on FWD[J].Journal of Shenzhen University Science and Engineering,2013,30(6):195.[doi:10.3724/SP.J.1249.2013.02195]
[2]胡江洋,毛君,张浩,等.火山渣作为路基填料的试验研究[J].深圳大学学报理工版,2015,32(6):625.[doi:10.3724/SP.J.1249.2015.06625]
 Hu Jiangyang,Mao Jun,et al.Research on test characteristic of cinder as subgrade filling[J].Journal of Shenzhen University Science and Engineering,2015,32(6):625.[doi:10.3724/SP.J.1249.2015.06625]
[3]刘国光,武志玮,牛富俊,等.基于BP神经网络的场道脱空检测方法及实验[J].深圳大学学报理工版,2016,33(3):309.[doi:10.3724/SP.J.1249.2016.03309]
 Liu Guoguang,Wu Zhiwei,Niu Fujun,et al.Airport pavement void testing based on back propagation neural network[J].Journal of Shenzhen University Science and Engineering,2016,33(6):309.[doi:10.3724/SP.J.1249.2016.03309]
[4]胡江洋,陈团结,折学森.路用改性煤沥青毒性消减试验效果分析[J].深圳大学学报理工版,2016,33(4):418.[doi:10.3724/SP.J.1249.2016.04418]
 Hu Jiangyang,Chen Tuanjie,et al.Analysis of toxicity reduction test about modified coal tar used for road[J].Journal of Shenzhen University Science and Engineering,2016,33(6):418.[doi:10.3724/SP.J.1249.2016.04418]
[5]吴朝阳,杨少伟,林岚,等.互通式立交高事故率出口的判定方法[J].深圳大学学报理工版,2016,33(5):536.[doi:10.3724/SP.J.1249.2016.05536]
 Wu Zhaoyang,Yang Shaowei,Lin Lan,et al.Method for identifying the high accident rate exits of interchange[J].Journal of Shenzhen University Science and Engineering,2016,33(6):536.[doi:10.3724/SP.J.1249.2016.05536]
[6]武志玮,刘国光,刘智勇.基于小波变换的场道脱空识别[J].深圳大学学报理工版,2017,34(3):265.[doi:10.3724/SP.J.1249.2017.03265]
 Wu Zhiwei,Liu Guoguang,and Liu Zhiyong,et al.Runway pavement void identification based on wavelet transform[J].Journal of Shenzhen University Science and Engineering,2017,34(6):265.[doi:10.3724/SP.J.1249.2017.03265]
[7]杨俊,李晓峰,相飞飞,等.废弃混凝土用作再生路面的试验研究[J].深圳大学学报理工版,2017,34(3):252.[doi:10.3724/SP.J.1249.2017.03252]
 Yang Jun,Li Xiaofeng,Xiang Feifei,et al.Experimental study on waste concrete as regenerate pavement[J].Journal of Shenzhen University Science and Engineering,2017,34(6):252.[doi:10.3724/SP.J.1249.2017.03252]
[8]柯文豪,陈华鑫,雷宇,等.基于GRNN神经网络的沥青路面裂缝预测方法[J].深圳大学学报理工版,2017,34(4):378.[doi:10.3724/SP.J.1249.2017.04378]
 Ke Wenhao,Chen Huaxin,Lei Yu,et al.Prediction method for asphalt pavement crack based on GRNN neural network[J].Journal of Shenzhen University Science and Engineering,2017,34(6):378.[doi:10.3724/SP.J.1249.2017.04378]
[9]李晶晶,张擎,陈忠达.水泥路面环氧树脂磨耗层的抗滑衰变模型[J].深圳大学学报理工版,2017,34(6):597.[doi:10.3724/SP.J.1249.2017.06597]
 Li Jingjing,Zhang Qing,and Chen Zhongda.Skid resistance decay model of epoxy wear layer on cement pavement[J].Journal of Shenzhen University Science and Engineering,2017,34(6):597.[doi:10.3724/SP.J.1249.2017.06597]
[10]王威娜,李小飞,徐青杰,等.沥青路面二维和三维结构分析模型的比较[J].深圳大学学报理工版,2018,35(1):39.[doi:10.3724/SP.J.1249.2018.01039]
 WANG Weina,LI Xiaofei,XU Qingjie,et al.Comparison of two dimensional and three dimensional modeling methods on the mechanical response of asphalt pavement[J].Journal of Shenzhen University Science and Engineering,2018,35(6):39.[doi:10.3724/SP.J.1249.2018.01039]

备注/Memo

备注/Memo:
Received:2018-12-06;Revised:2019-07-17;Accepted:2019-08-01
Foundation:Science and Technology Project of Guangdong Provincial Transportation Department (Science and Technology-2015-02-011)
Corresponding author:Professor WANG Xuancang.E-mail:wxc2005@163.com
Citation:ZHAO Jing,WU Wangjie,WANG Xuancang,et al.Prediction method of pavement performance based on same dimension gray recurrence dynamic model[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(6): 628-634.(in Chinese)
基金项目:广东省交通运输厅科技资助项目 (科技-2015-02-011)
作者简介:赵静(1992—),长安大学博士研究生.研究方向:路基路面及道路经济管理.E-mail:1040490114@qq.com
引文:赵静,吴旺杰,王选仓,等.基于等维灰数递补模型的路面性能预测方法[J]. 深圳大学学报理工版,2019,36(6):628-634.
更新日期/Last Update: 2019-11-30