[1]郑睢宁,耿瑶,张豪,等.氧化石墨烯改性水泥基复合材料的路用性能[J].深圳大学学报理工版,2019,36(6):614-620.[doi:10.3724/SP.J.1249.2019.06614]
 ZHENG Suining,GENG Yao,ZHANG Hao,et al.Road performance of graphene oxide modified cement-based composites[J].Journal of Shenzhen University Science and Engineering,2019,36(6):614-620.[doi:10.3724/SP.J.1249.2019.06614]
点击复制

氧化石墨烯改性水泥基复合材料的路用性能()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年第6期
页码:
614-620
栏目:
土木建筑工程
出版日期:
2019-11-20

文章信息/Info

Title:
Road performance of graphene oxide modified cement-based composites
文章编号:
201906003
作者:
郑睢宁耿瑶张豪何锐
长安大学材料科学与工程学院,陕西西安,710061
Author(s):
ZHENG Suining GENG Yao ZHANG Hao and HE Rui
building materials; cement-based composites; graphene oxide; road performance; frost resistance; modification mechanism
关键词:
建筑材料水泥基复合材料氧化石墨烯路用性能抗冻性改性机理
Keywords:
building materialscement-based compositesgraphene oxideroad performancefrost resistancemodification mechanism
分类号:
U414
DOI:
10.3724/SP.J.1249.2019.06614
文献标志码:
A
摘要:
为研究氧化石墨烯(graphene oxide, GO)对水泥基复合材料路用性能的影响,制备了含不同质量分数GO的改性水泥基复合材料.采用流动度、强度和抗冻性等指标评价GO水泥基复合材料路用性能,结合扫描电镜(scanning electron microscope, SEM)与X射线衍射(X-ray diffraction, XRD)试验探究其改性机理.结果表明,GO改性水泥基复合材料力学性能和抗冻性增幅较大,流动度有所下降;GO质量分数为0.04%时,水泥基复合材料的强度最高,其28 d抗压与抗折强度较GO质量分数为0的对照组分别提高了31.3%与44.2%;GO质量分数为0.02%时,抗冻性最好,冻融循环300 次后,质量损失率仅为0.6%,残留抗压与抗折强度比分别为69%和75%.微观分析可知,GO表面的含氧亲水基团(羟基、羧基等)可为水泥水化产物结晶提供生长点,硅酸钙凝胶(C-S-H)在其上生长、交联,并且随水化龄期增长交联作用日益增强,GO可以改善水泥基复合材料的力学性能和抗冻性.
Abstract:
In order to investigate the effect of graphene oxide (GO) on the pavement performance of cement-based composites,modified cement-based composites with different content of GO were prepared,and the pavement performance was evaluated by the fluidity,strength and frost resistance.The modification mechanism was investigated by scanning electron microscope (SEM) and X-ray diffraction.The results show that the mechanical properties and frost resistance of GO modified cement-based composites increase greatly and the fluidity decreases.When the content of GO is 0.04% (by mass),the strength of cement-based composites is the highest, and the compressive and flexural strength of the composites at 28 d increase by 31.3% and 44.2% compared with the group with the content of GO of 0.When the content of GO is 0.02%,the cement-based composites have the best frost resistance.After 300 cycles of freezing-thawing,the mass loss rate is only 0.6% as well as the residual compressive strength ratio and residual flexural strength ratio are 69% and 75% respectively.According to the micro-analysis,oxygen-containing hydrophilic groups (hydroxyl group,carboxyl group,etc) on the GO surface can provide growing points for the crystallization of cement hydration products and the calcium silicate gel (C-S-H) grows and cross-links on it and the effect of cross-linking increases with the hydration age.GO can improve the mechanical properties and frost resistance of cement-based composites.

参考文献/References:

[1] 陈宝锐,吴其胜,诸华军,等.石墨烯/水泥基复合材料的制备与性能[J].材料科学与工程学报,2018,36(4):650-655.
CHEN Baorui, WU Qisheng, ZHU Huajun, et al. Preparation and properties of graphene cement-based composite materials[J]. Journal of Materials Science & Engineering, 2018,36(4):650-655.(in Chinese)
[2] LU Zeyu, LI Xiangyu, HANIF A, et al. Early-age interaction mechanism between the graphene oxide and cement hydrates[J].Construction and Building Materials,2017,152:232-239.
[3] YANG Haibin,MONASTERIO M,CUI Hongzhi,et al.Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite[J].Composites:Part A,2017,102:263-272.
[4] 马颖,王丹,王晴.多壁碳纳米管水泥基复合材料的制备与力学性能研究[J].混凝土,2014(6):72-74.
MA Ying, WANG Dan, WANG Qing.Preparation of multi-wall carbon nanotubes reinforced cement composites and study of its mechanical properties[J].Concrete,2014(6):72-74.(in Chinese)
[5] MAKAR J M,BEAUDOIN J J.Carbon nanotubes and their application in the construction industry[J].Special Publication-Royal Society of Chemistry,2004,292:331-342.
[6] WANG Qin, WANG Jian, LU Chunxiang, et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement[J]. New Carbon Materials, 2015,30(4):49-56.
[7] LI Xueguang,WEI Wei,QIN Hao,et al.Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement[J].Journal of Physics and Chemistry of Solids,2015,85:39-43.
[8] 吕生华,孙婷,刘晶晶,等.氧化石墨烯纳米片层对水泥基复合材料的增韧效果及作用机制[J].复合材料学报,2014,31(3):644-652.
LYU Shenghua, SUN Ting, LIU Jingjing, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites[J].Acta Materiae Compositae Sinica,2014,31(3):644-652.(in Chinese)
[9] 王琴,李时雨,王键,等.氧化石墨烯对水泥水化进程及其主要水化产物的影响[J].硅酸盐学报,2018,46(2):163-172.
WANG Qin, LI Shiyu, WANG Jian, et al. Effect of graphene oxide on hydration process and main hydration products of cement[J].Journal of the Chinese Ceramic Society,2018,46(2):163-172.(in Chinese)
[10] BABAK F, ABOLFAZL H, ALIMORAD R, et al. Preparation and mechanical properties of graphene oxide:cement nanocomposites[J].The Scientific World Journal,2014(4):276-323.
[11] GAO Wei,ALEMANY L B,CI Lijie,et al.New insights into the structure and reduction of graphite oxide[J].Nature Chemistry,2009,1(5):403-408.

相似文献/References:

[1]张亚芳,陈江平.不同掺量玻璃纤维增强水泥细观数值研究[J].深圳大学学报理工版,2010,27(1):103.
 ZHANG Ya-fang and CHEN Jiang-ping.Numerical study on glass fiber reinforced cement with different incorporation rates[J].Journal of Shenzhen University Science and Engineering,2010,27(6):103.
[2]刘贤淼,江泽慧,费本华.玻璃纤维布增强造纸脱墨污泥纤维板性能研究[J].深圳大学学报理工版,2012,29(No.4(283-376)):371.[doi:10.3724/SP.J.1249.2012.04371]
 LIU Xian-miao,JIANG Ze-hui,and FEI Ben-hua.Paper deinking sludge fiberboard reinforced by fiberglass fabric[J].Journal of Shenzhen University Science and Engineering,2012,29(6):371.[doi:10.3724/SP.J.1249.2012.04371]
[3]彭家惠,刘先锋,张建新,等.磷酸盐对α半水脱硫石膏凝结硬化的作用机理[J].深圳大学学报理工版,2014,31(4):388.[doi:10.3724/SP.J.1249.2014.04388]
 Peng Jiahui,Liu Xianfeng,Zhang Jianxin,et al.Mechanisms of phosphate on the hydration and hardening of α-hemihydrate desulfurization gypsum[J].Journal of Shenzhen University Science and Engineering,2014,31(6):388.[doi:10.3724/SP.J.1249.2014.04388]
[4]倪卓,邢锋,石开勇,等.微胶囊对水泥自修复复合材料微观结构的影响[J].深圳大学学报理工版,2015,32(1):68.[doi:10.3724/SP.J.1249.2015.01068]
 Ni Zhuo,Xing Feng,Shi Kaiyong,et al.Influence of microcapsule on microcosmic structure of self-healing cementitious composite[J].Journal of Shenzhen University Science and Engineering,2015,32(6):68.[doi:10.3724/SP.J.1249.2015.01068]
[5]童芸芸,叶良,马超.钢筋腐蚀产物实时检测的再钝化机理分析[J].深圳大学学报理工版,2017,34(1):75.[doi:10.3724/SP.J.1249.2017.01075]
 Tong Yunyun,Ye Liang,and Ma Chao.Real time analysis on repassivation mechanism of steel rebar corrosion products[J].Journal of Shenzhen University Science and Engineering,2017,34(6):75.[doi:10.3724/SP.J.1249.2017.01075]
[6]刘昱清,董鹏,滕晓娟,等.基于X-ray μCT技术的钢筋锈胀特征分析[J].深圳大学学报理工版,2017,34(6):618.[doi:10.3724/SP.J.1249.2017.06618]
 Liu Yuqing,Dong Peng,Teng Xiaojuan,et al.Characterization of corrosion expansion feature of steel bar by means of X-ray μCT[J].Journal of Shenzhen University Science and Engineering,2017,34(6):618.[doi:10.3724/SP.J.1249.2017.06618]
[7]丁铸,孙晨,戴梦希.磷酸盐水泥砂浆作为锚固胶的性能研究[J].深圳大学学报理工版,2018,35(2):132.[doi:10.3724/SP.J.1249.2018.02132]
 DING Zhu,SUN Chen,and DAI Mengxi.Properties of phosphate cement mortar as an anchorage adhesive[J].Journal of Shenzhen University Science and Engineering,2018,35(6):132.[doi:10.3724/SP.J.1249.2018.02132]
[8]刘斌清,仵江涛,陈华鑫,等.多聚磷酸改性沥青的路用性能及机理分析[J].深圳大学学报理工版,2018,35(3):292.[doi:10.3724/SP.J.1249.2018.03292]
 LIU Binqing,WU Jiangtao,et al.Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J].Journal of Shenzhen University Science and Engineering,2018,35(6):292.[doi:10.3724/SP.J.1249.2018.03292]
[9]董必钦,郭邦文,刘昱清,等.水泥净浆水分传输过程可视化表征与定量分析[J].深圳大学学报理工版,2018,35(3):285.[doi:10.3724/SP.J.1249.2018.03285]
 DONG Biqin,GUO Bangwen,LIU Yuqing,et al.Visualization and quantitative analysis of water transport evolution in cementitious materials[J].Journal of Shenzhen University Science and Engineering,2018,35(6):285.[doi:10.3724/SP.J.1249.2018.03285]
[10]陈歆,郑秀华,韩凯.玄武岩纤维掺杂混凝土材料特性研究[J].深圳大学学报理工版,2019,36(1):61.[doi:10.3724/SP.J.1249.2019.01061]
 CHEN Xin,ZHENG Xiuhua,and HAN Kai.Characterization of basalt fiber doped concrete materials[J].Journal of Shenzhen University Science and Engineering,2019,36(6):61.[doi:10.3724/SP.J.1249.2019.01061]
[11]付晔,李庆华,徐世烺.高温后纳米改性水泥基材料的残余抗折强度[J].深圳大学学报理工版,2014,31(2):187.[doi:10.3724/SP.J.1249.2014.02187]
 Fu Ye,Li Qinghua,and Xu Shilang.The effects of high temperature on flexural strengths of high performance nano-modified cementitious composites[J].Journal of Shenzhen University Science and Engineering,2014,31(6):187.[doi:10.3724/SP.J.1249.2014.02187]

备注/Memo

备注/Memo:
Received:2018-09-05;Revised:2019-03-11;Accepted:2019-05-11
Foundation:National Key R&D Plan (2017YFB0309903-02);National Natural Science Foundation of China(51508030);Basic Research Project of Qinghai Province(2017-ZJ-715)
Corresponding author:Associate professor HE Rui.E-mail:heruia@163.com
Citation:ZHENG Suining, GENG Yao, ZHANG Hao, et al.Road performance of graphene oxide modified cement-based composites[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(6): 614-620.(in Chinese)
基金项目:国家重点研发计划资助项目(2017YFB0309903-02);国家自然科学基金资助项目(51508030);青海省基础研究计划资助项目(2017-ZJ-715)
作者简介:郑睢宁(1993—),长安大学硕士研究生.研究方向:道路工程材料.E-mail:zhengsuining@163.com
引文:郑睢宁,耿瑶,张豪,等.氧化石墨烯改性水泥基复合材料的路用性能[J]. 深圳大学学报理工版,2019,36(6):614-620.
更新日期/Last Update: 2019-11-30