参考文献/References:
[1] HWANG C S. Prospective of semiconductor memory devices: from memory system to materials[J]. Advanced Electronic Materials, 2015, 1(6): 1400056.
[2] YODH G B, PAL Y, TREFIL J S. Comment on the evidence for rapidly rising p-p total cross section from cosmic-ray data[J]. Physical Review D, 1973, 8(9): 3233-3236.
[3] BEKENSTEIN J D. Black holes and entropy[J]. Physical Review D, 1973, 7(8): 2333-2346.
[4] LI Ming. Review of advanced CMOS technology for post-Moore era[J]. Science China (Physics, Mechanics & Astronomy), 2012, 55(12): 2316-2325.
[5] HAN Suting, PENG Haiyan, SUN Qijun, et al. An overview of the development of flexible sensors[J]. Advanced Materials, 2017, 29(33): 1700375.
[6] SHIM J, PARK H Y, KANG D H, et al. Electronic and optoelectronic devices based on two-dimensional materials: from fabrication to application[J]. Advanced Electronic Materials, 2017, 3(4): 1600364.
[7] ZHOU Ye, HAN Suting, CHEN Xian, et al. An upconverted photonic nonvolatile memory[J]. Nature Communications, 2014, 5: 4720.
[8] HAN Suting, ZHOU Ye, ZHOU Li, et al. CdSe/ZnS core-shell quantum dots charge trapping layer for flexible photonic memory[J]. Journal of Materials Chemistry C, 2015, 3(13): 3173-3180.
[9] DUBNAU J, CHIANG A S, TULLY T. Neural substrates of memory: from synapse to system[J]. Neurobiol, 2003, 54(1): 238-253.
[10] OHNO T, HASEGAWA T, TSURUOKA T, et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses[J]. Nature Materials, 2011, 10(8): 591-595.
[11] PEREDA A E. Electrical synapses and their functional interactions with chemical synapses[J]. Nature Reviews Neuroscience, 2014, 15(4): 250-263.
[12] TNNESEN J, KATONA G, RZSA B, et al. Spine neck plasticity regulates compartmentalization of synapses[J]. Nature Neuroscience, 2014, 17: 678.
[13] IRIMIA-VLADU M, TROSHIN P A, REISINGER M A, et al. Biocompatible and biodegradable materials for organic field-effect transistors[J]. Advanced Functional Materials, 2010, 20(23): 4069-4076.
[14] IRIMIA-VLADU M, SARICIFTCI N S, BAUER S. Exotic materials for bio-organic electronics[J]. Journal of Materials Chemistry, 2011, 21(5): 1350-1361.
[15] HWANG S W, PARK G, CHENG Huanyu, et al. Materials for high-performance biodegradable semiconductor devices[J]. Advanced Materials, 2014, 26(13): 1992-2000.
[16] LEE S W, LEE H J, CHOI J H, et al. Periodic array of polyelectrolyte-gated organic transistors from electrospun poly(3-hexylthiophene) nanofibers[J]. Nano Letters, 2010, 10(1): 347-351.
[17] WANG Chengyuan, WANG Jiangxin, LI Peizhou, et al. Synthesis, characterization, and non-volatile memory device application of an n-substituted heteroacene[J]. Chemistry, 2014, 9(3): 779-783.
[18] CRAWFORD A O, CAVALLI G, HOWLIN B J. Investigation of structure property relationships in liquid processible, solvent free, thermally stable bismaleimide-triazine (BT) resins[J]. Reactive & Functional Polymers, 2016, 102: 110-118.
[19] LIU Jilei, CHEN Zhen, CHEN Shi, et al. Electron/ion sponge-like V-based polyoxometalate: toward high-performance cathode for rechargeable sodium ion batteries[J]. ACS Nano, 2017, 11(7): 6911-6920.
[20] ABDULAZIZ M, SHANMUGAM S. Sulfonated poly (arylene ether ketone)/polyoxometalate-graphene oxide composite: a highly ion selective membrane for all vanadium redox flow batteries[J]. Chemical Communications, 2017, 53(5): 917-920.
[21] GLEZOS N, ARGITIS P, VELESSIOTIS D, et al. Tunneling transport in polyoxometalate based composite materials[J]. Applied Physics Letters, 2003, 83(3): 488-490.
[22] GLEZOS N, DOUVAS A M, ARGITIS P, et al. Electrical characterization of molecular monolayers containing tungsten polyoxometalates[J]. Microelectronic Engineering, 2006, 83(4/5/6/7/8/9): 1757-1760.
[23] DOUVAS A M, MAKARONA E, GLEZOS N, et al. Polyoxometalate-based layered structures for charge transport control in molecular devices[J]. ACS Nano, 2008, 2(4): 733-742.
[24] MAKARONA E, KAPETANAKIS E, VELESSIOTIS D M, et al. Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates[J]. Microelectronic Engineering, 2008, 85(5): 1399-1402.
[25] LI Xianbin, CHEN Nianke, WANG Xuepeng, et al. Phase-change superlattice materials toward low power consumption and high density data storage: microscopic picture, working principles, and optimization[J]. Advanced Functional Materials, 2018, 28(24): 1803380.
[26] BALLIOU A, PAPADIMITROPOULOS G, SKOULATAKIS G, et al. Low-dimensional polyoxometalate molecules/tantalum oxide hybrids for non-volatile capacitive memories[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7212-7220.
[27] LI Mengting, CONG Lina, ZHAO Jiao, et al. Self-organization towards complex multi-fold meso-helices in the structures of Wells-Dawson polyoxometalate-based hybrid materials for lithium-ion batteries[J]. Journal of Materials Chemistry, 2017, 5(7): 3371-3376.
[28] MARTIN-SABI M, WINTER R, LYDON C, et al. Rearrangement of {α-P2W15} to {PW6} moieties during the assembly of transition-metal-linked polyoxometalate clusters[J]. Chemical Communications, 2016, 52(5): 919-921.
[29] LEHMANN J, GAITA-ARINO A, CORONADO E A. Spin qubits with electrically gated polyoxometalate molecules[J]. Nature Nanotechnology, 2007, 2(5): 312-317.
[30] BONFIGLIO V, IANNACCONE G. Sensitivity-based investigation of threshold voltage variability in 32-nm flash memory cells and MOSFETs[J]. Solid-State Electronics, 2013, 84: 127-131.
[31] WANG Peng, WANG Xiangping, ZHU Guoyi, et al. Renewable-surface amperometric nitrite sensor based on sol-gel-derived silicomolybdate-methylsilicate-graphite composite material[J]. The Analyst, 2000, 125(7): 1291-1294.
[32] HAN Suting, ZHOU Ye, WANG Chundong, et al. Layer-by-layer-assembled reduced graphene oxide/gold nanoparticle hybrid double-floating-gate structure for low-voltage flexible flash memory[J]. Advanced Materials, 2013, 25(6): 793-872.
[33] TALAPIN D V, LEE J S, KOVALENKO M V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications[J]. Chemical Reviews, 2010, 110(1): 389-458.
[34] LEE M J, LEE C B, LEE D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures[J]. Nature Materials, 2011, 10(8): 625-630.
[35] KANG M, BAEG K, KHIM D, et al. Printed, flexible, organic nano-floating-gate memory: effects of metal nanoparticles and blocking dielectrics on memory characteristics[J]. Advanced Functional Materials, 2013, 23(28): 3503-3512.
[36] DI Chongan, YU Gui, LIU Yunqi, et al. High-performance organic field-effect transistors with low-cost copper electrodes[J]. Advanced Materials, 2008, 20(7): 1286-1290.
[37] ZHOU Ye, HAN Suting, XU Zongxiang, et al. Low voltage flexible nonvolatile memory with gold nanoparticles embedded in poly(methyl methacrylate)[J]. Nanotechnology, 2012, 23(34): 344014.
[38] CHANG H C, LIU Chengliang, CHEN Wenchang. Flexible nonvolatile transistor memory devices based on one-dimensional electrospun P3HT: Au hybrid nanofibers[J]. Advanced Functional Materials, 2013, 23(39): 4960-4968.
[39] KALTENBRUNNER M, STADLER P, SCHWDIAUER R, et al. Anodized aluminum oxide thin films for room-temperature-processed, flexible, low-voltage organic non-volatile memory elements with excellent charge retention[J]. Advanced Materials, 2011, 23: 4892-4896.
[40] KIM D H, LU N, MA R, et al. Epidermal electronics[J]. Science, 2011, 333(6044): 838-843.
[41] CHORTOS A, LIU Jia, BAO Zhenan. Pursuing prosthetic electronic skin[J]. Nature Materials, 2016, 15(9): 937-950.
[42] SON D, LEE J, QIAO Shutao, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders[J]. Nature Nanotechnology, 2014, 9(5): 397-404.
[43] GARG A, ONUCHIC J N, AMBEGAOKAR V. Effect of friction on electron transfer in biomolecules[J]. The Journal of Chemical Physics, 1985, 83(9): 4491-4503.
[44] VALENTINI L, CARDINALI M, FORTUNATI E, et al. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films[J]. Applied Physics Letters, 2014, 105(15): 153111.
[45] QIAN Kai, NGUYEN V C, CHEN Tupei, et al. Novel concepts in functional resistive switching memories[J]. Journal of Materials Chemistry C, 2016, 4: 9637-9645.
[46] HUNG C C, CHIU Y C, WU H C, et al. Conception of stretchable resistive memory devices based on nanostructure-controlled carboh drate-block-polyisoprene block copolymers[J]. Advanced Functional Materials, 2017, 27(13): 1606161.
[47] LEE J H, YEW S C, CHO J, et al. Effect of redox proteins on the behavior of non-volatile memory[J]. Chemical Communications, 2012, 48: 12008-12010.
[48] ZHANG Chaochao, SHANG Jie, XUE Wuhong, et al. Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor[J]. Chemical Communications, 2016, 52(26): 4828-4831.
[49] VOLPATI D, MACHADO A D, OLIVATI C A, et al. Physical vapor deposited thin films of lignins extracted from sugar cane bagasse: morphology, electrical properties, and sensing applications[J]. Biomacromolecules, 2011, 12(9): 3223-3231.
[50] GELLERSTEDT G. Softwood kraft lignin: raw material for the future[J].Industrial Crops and Products, 2015, 77: 845-854.
[51] BAEK H, LEE C, LIM K I, et al. Resistive switching memory properties of layer-by-layer assembled enzyme multilayers[J]. Nanotechnology, 2012, 23(15): 155604.
[52] BAEK H, LEE C, PARK J, et al. Layer-by-layer assembled enzyme multilayers with adjustable memory performance and low power consumption via molecular-level control[J]. Journal of Materials Chemistry, 2012, 22(11): 4645-4651.
[53] SHIH C C, CHUNG C Y, LAM J Y, et al. Transparent deoxyribonucleic acid substrate with high mechanical strength for flexible and biocompatible organic resistive memory devices[J]. Chemical Communications, 2016, 52(92): 13463-13466.
[54] KIM B J, KO Y, CHO J H, et al. Organic field-effect transistor memory devices using discrete ferritin nanoparticle-based gate dielectrics[J]. Small, 2013, 9(22): 3784-3791.
[55] MEDALSY I, KLEIN M, HEYMAN A, et al. Logic implementations using a single nanoparticle-protein hybrid[J]. Nature Nanotechnology, 2010, 5(6): 451-457.
[56] KO K, KIM Y, BAEK K, et al. Electrically bistable properties of layer-by-layer assembled multilayers based on protein nanoparticles[J]. ACS Nano, 2011, 5(12): 9918-9926.
[57] ZHU Bowen, WANG Hong, LEOW W R, et al. Silk fibroin for flexible electronic devices[J]. Advanced Materials, 2016, 28(22): 4250-4265.
[58] HOTA M K, BERA M K, KUNDU B, et al. A natural silk fibroin protein-based transparent bio-memristor[J]. Advanced Functional Materials, 2012, 22(21): 4493-4499.
[59] WANG Hong, DU Yuanmin, LI Yingtao, et al. Configurable resistive switching between memory and threshold characteristics for protein-based devices[J]. Advanced Functional Materials, 2015, 25(25): 3825-3831.
[60] WANG Hong, ZHU Bowen, MA Xiaohua, et al. Physically transient resistive switching memory based on silk protein[J]. Small, 2016, 12(20): 2715-2719.
[61] L Ziyu,WANG Yan,CHEN Zhonghui,et al.Phototunable biomemory based on light-mediated charge trap[J]. Advanced Science, 2018, 5(9): 1870051.
[62] XU Xuezhu, ZHOU Jian, NAGARAJU D H, et al. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices[J]. Advanced Functional Materials, 2015, 25(21): 3193-3202.
[63] PARK Y, LEE J S. Flexible multistate data storage devices fabricated using natural lignin at room temperature[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6207-6212.
[64] PARK Y, LEE J S. Artificial synapses with short-and long-term memory for spiking neural networks based on renewable materials[J]. ACS Nano, 2017, 11(9): 8962-8969.
[65] LING Qidan, LIAW D J, ZHU Chunxiang, et al. Polymer electronic memories: materials, devices and mechanisms[J]. Progress in Polymer Science, 2008, 33(10): 917-978.
[66] CHO B, SONG S, JI Y, et al. Organic resistive memory devices: performance enhancement, integration, and advanced architectures[J]. Advanced Functional Materials, 2011, 21(15): 2806-2829.
[67] HAFSI B, BOUBAKER A, GUERIN D, et al. Electron-transport polymeric gold nanoparticles memory device, artificial synapse for neuromorphic applications[J]. Organic Electronics, 2017, 50: 499-506.
[68] WU Guodong, ZHANG Jin, WAN Xiang, et al. Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrate[J]. Materials Chemistry, 2014, 2(31): 6249-6255.