[1]范姝婷,马莹玉,舒国响,等.太赫兹与水的相互作用:机理、应用和新趋势[J].深圳大学学报理工版,2019,36(No.2(111-220)):200-206.[doi:10.3724/SP.J.1249.2019.02200]
 FAN Shuting,MA Yingyu,SHU Guoxiang,et al.The interaction of terahertz with water molecules: mechanism, applications, and new trends[J].Journal of Shenzhen University Science and Engineering,2019,36(No.2(111-220)):200-206.[doi:10.3724/SP.J.1249.2019.02200]
点击复制

太赫兹与水的相互作用:机理、应用和新趋势()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年No.2(111-220)
页码:
200-206
栏目:
【专辑:太赫兹技术】
出版日期:
2019-03-20

文章信息/Info

Title:
The interaction of terahertz with water molecules: mechanism, applications, and new trends
文章编号:
201902014
作者:
范姝婷1马莹玉2舒国响2钱正芳1
1)深圳大学物理与光电工程学院,广东深圳518060
2)深圳大学电子与信息工程学院,广东深圳518060
Author(s):
FAN Shuting1 MA Yingyu2 SHU Guoxiang2 and QIAN Zhengfang1
1) College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) College of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
电磁波物理 太赫兹 太赫兹时域光谱 太赫兹成像 生物医学应用 癌症检测 水分子网络
Keywords:
electromagnetic wave physics terahertz terahertz time domain spectroscopy terahertz imaging biomedical applications cancer diagnosis water network
分类号:
TN219;TN247
DOI:
10.3724/SP.J.1249.2019.02200
文献标志码:
A
摘要:
自21世纪以来,太赫兹技术因受到世界各国的重视和扶持而取得迅猛发展.介绍液态水分子网络在太赫兹波段的振动和弛豫模式,以及太赫兹波与水分子之间相互作用的原理.评述基于此机理太赫兹在生物医学,尤其是关于癌症检测领域的发展与挑战,介绍了本课题组目前开展的工作.展望围绕太赫兹波与水相互作用产生的新研究与新技术.
Abstract:
Terahertz technology has gone through a rapid development since the beginning of the 21st century owing to the great support from governments around the world. This review introduces the interaction mechanism of terahertz waves and water molecules. We introduce the terahertz biomedical research originated from this interaction mechanism, especially the development as well as the core challenges in cancer diagnosis. Our work in response is described. Finally, we discuss some novel research work and the trend of the terahertz technology based on the interaction of terahertz waves and water.

参考文献/References:

[1] AUSTON D H. Picosecond optoelectronic switching and gating in silicon[J]. Applied Physics Letters, 1975, 26(3): 101-103.
[2] HOSAKO I, SEKINE N, PATRASHIN M, et al. At the dawn of a new era in terahertz technology[J]. Proceedings of the IEEE, 2007, 95(8): 1611-1623.
[3] EBBINGHAUS S, KIM S J, HEYDEN M, et al. Protein sequence- and pH-dependent hydration probed by terahertz spectroscopy[J]. Journal of the American Chemical Society, 2008, 130(8): 2374-2375..
[4] LUPI L, COMEZ L, PAOLANTONI M, et al. Hydration and aggregation in mono- and disaccharide aqueous solutions by gigahertz-to-terahertz light scattering and molecular dynamics simulations[J]. Journal of Physical Chemistry B, 2012, 116(51): 14760-14767.
[5] DAGADE D H, BARGE S S. Hydrogen bonding in liquid water and in the hydration shell of salts[J]. Chemical Physics and Physical Chemistry, 2016, 17(6): 902-912.
[6] MOLLER U, COOKE D G, TANAKA K, et al. Terahertz reflection spectroscopy of Debye relaxation in polar liquids (invited)[J]. Journal of the Optical Society of America B - Optical Physics, 2009, 26(9): A113-A125.
[7] AGMON N. Tetrahedral displacement: the molecular mechanism behind the Debye relaxation in water[J]. Journal of Physical Chemistry, 1995, 100(3): 1072-1080.
[8] PERAKIS F, MARCO L D, SHALIT A, et al. Vibrational spectroscopy and dynamics of water[J]. Chemical Reviews, 2016, 116(13): 7590.
[9] RNNE C, KEIDING S R. Low frequency spectroscopy of liquid water using THz-time domain spectroscopy[J]. Journal of Molecular Liquids, 2002, 101(1/2/3): 199-218.
[10] GUILLOT B, GUISSANI Y. A computer simulation study of the temperature dependence of the hydrophobic hydration[J]. Journal of Chemical Physics, 1993, 99(10): 8075-8094.
[11] ARKHIPOV V I, AGMON N, ARKHIPOV V I. Relation between macroscopic and microscopic dielectric relaxation times in water dynamics[J]. Israel Journal of Chemistry, 2010, 43(3-4):363-371.
[12] BURSULAYA B D, KIM H J. Spectroscopic and dielectric properties of liquid water: a molecular dynamics simulation study[J]. Journal of Chemical Physics, 1998, 109(12):4911-4919.
[13] RNNE C, THRANE L, STRAND P O, et al. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation[J]. Journal of Chemical Physics, 1997, 107(14): 5319-5331.
[14] YADA H, NAGAI M, TANAKA K. Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy[J]. Chemical Physics Letters, 2008, 464(4/5/6): 166-170.
[15] ZALDEN P, SONG Liwei, WU Xiaojun, et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation[J]. Nature Communications, 2018, 9(1): 2142.
[16] NGAI K L. Interpretation of the GHz to THz dielectric relaxation dynamics of water in the framework of the coupling model[J]. Journal of Molecular Liquids, 2018, 253: 113-118.
[17] SIEGEL P H. Terahertz technology in biology and medicine[C]// MTT-S International Microwave Symposium Digest. Fort Worth, USA: IEEE, 2004: 1575.
[18] WOODWARD R M, WALLACE V P, PYE R J, et al. Terahertz pulse imaging of ex vivo basal cell carcinoma[J]. Journal of Investigative Dermatology, 2003, 120(1): 72-78.
[19] YANG Xiang, ZHAO Xiang, YANG Ke, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810-824.
[20] ASHWORTH P C, PICKWELL-MACPHERSON E, PROVENZANO E, et al. Terahertz pulsed spectroscopy of freshly excised human breast cancer[J]. Optics Express, 2009, 17(15): 12444-12454.
[21] JUNG E, LIM M, MOON K, et al. Terahertz pulse imaging of micro-metastatic lymph nodes in early-stage cervical cancer patients[J]. Journal of the Optical Society of Korea, 2011, 15(2): 155-160.
[22] YAMAGUCHI S, FUKUSHI Y, KUBOTA O, et al. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy[J]. Scientific Reports, 2016, 6: 30124.
[23] SUN Yiwen, ZHU Zexuan, CHEN Siping, et al. Observing the temperature dependent transition of the GP2 peptide using terahertz spectroscopy[J]. PLOS One, 2012, 7(11): e50306.
[24] PENG Yan, CHEN Wanqing, ZHU Yiming. Identification of biomarker (L-2HG) in real human brain glioma by terahertz spectroscopy[C]// CLEO: Applications and Technology. San Jose, USA: Optical Society of America, 2018: ATh3Q-5.
[25] GENG Zhaoxin, ZHANG Xiong, FAN Zhiyuan, et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage[J]. Scientific Reports, 2017, 7: 16378.
[26] CHAN W L, CHARAN K, TAKHAR D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): S293.
[27] WADE C G, IBALIC N, DE MELO N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 2017, 11(1): 40-43.
[28] CHERNOMYRDIN N V, KUCHERYAVENKO A S, KOLONTAEVA G S, et al. Reflection-mode continuous-wave 0.15λ-resolution terahertz solid immersion microscopy of soft biological tissues[J]. Applied Physics Letters, 2018, 113(11): 111102.
[29] NAFTALY M, MOLLOY J. A multi-lab intercomparison study of THz time-domain spectrometers[C]// The 40th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THZ). Hong Kong, China: IEEE, 2015: 1.
[30] SY S, HUANG Shengyang, WANG Yixiang, et al. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast[J]. Physics in Medicine and Biology, 2010, 55(24): 7587-7596.
[31] CHOPRA N, YANG Ke, UPTON J, et al. Fibroblasts cell number density based human skin characterization at THz for in-body nanonetworks[J]. Nano Communication Networks, 2016, 10: 60-67.
[32] TRUONG B C, FITZGERALD A J, FAN S A. Concentration analysis of breast tissue phantoms with terahertz spectroscopy[J]. Biomedical Optics Express, 2018, 9(3): 1334-1349.
[33] FAN Shuting, QIAN Zhengfang, WALLACE V P. Hydration of gelatin molecules studied with terahertz time-domain spectroscopy[C]// SPIE/COS Photonics Asia. International Society for Optics and Photonics. Beijing: SPIE, 2018: 1082604.
[34] PUPEZA I, WILK R, KOCH M. Highly accurate optical material parameter determination with THz time-domain spectroscopy[J]. Optics Express, 2007, 15(7): 4335-4350.
[35] DUVILLARET L, GARET F, COUTAZ J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 739-746.
[36] WITHAYACHUMNANKUL W, FISCHER B M, LIN H A. Uncertainty in terahertz time-domain spectroscopy measurement[J]. Journal of the Optical Society of America B-Optical Physics, 2008, 25(6): 1059-1072.
[37] WITHAYACHUMNANKUL W, NAFTALY M. Fundamentals of measurement in terahertz time-domain spectroscopy[J]. Journal of Infrared Millimeter and Terahertz Waves, 2014, 35(8): 610-637.
[38] NAFTALY M, SHOAIB N, STOKES D, et al. Intercomparison of terahertz dielectric measurements using vector network analyzer and time-domain spectrometer[J]. Journal of Infrared Millimeter and Terahertz Waves, 2016, 37(7): 691-702.
[39] NAFTALY M, CLARKE R G, HUMPHREYS D A, et al. Metrology state-of-the-art and challenges in broadband phase-sensitive terahertz measurements[J]. Proceedings of the IEEE, 2017(99): 1-15.
[40] FAN Shuting, PARROTT E P, UNG B S, et al. Calibration method to improve the accuracy of THz imaging and spectroscopy in reflection geometry[J]. Photonics Research, 2016, 4(3): 29-35.
[41] CHEN Xuequan, PARROTT E P, UNG B S. A robust baseline and reference modification and acquisition algorithm for accurate THz imaging[J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(5): 493-501.
[42] JIN Qi, YIWEN E, WILLIAMS K, et al. Observation of broadband terahertz wave generation from liquid water[J]. Applied Physics Letters, 2017, 111(7): 071103.
[43] HAMM P, SAVOLAINEN J. Two-dimensional-Raman-terahertz spectroscopy of water: theory[J]. Journal of Chemical Physics, 2012, 136(9): 094516.
[44] FINNERAN I A, WELSCH R, ALLODI M A, et al. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(25): 6857-6861.
[45] SHALIT A, AHMED S, SAVOLAINEN J, et al. Terahertz echoes reveal the inhomogeneity of aqueous salt solutions[J]. Nature Chemistry, 2017, 9(3): 273-278.
[46] GRECHKO M, HASEGAWA T, D’ANGELO F, et al. Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy[J]. Nature Communications, 2018, 9(1): 885.

相似文献/References:

[1]黄海漩,徐平,阮双琛,等.基于矢量理论分束器设计方法及其机理的探讨[J].深圳大学学报理工版,2015,32(No.2(111-220)):172.[doi:10.3724/SP.J.1249.2015.02172]
 Huang Haixuan,Xu Ping,Ruan Shuangchen,et al.A method to design beam-splitters based on vectorial theory and discussion on its physical mechanism[J].Journal of Shenzhen University Science and Engineering,2015,32(No.2(111-220)):172.[doi:10.3724/SP.J.1249.2015.02172]

备注/Memo

备注/Memo:
Received:2018-12-10;Accepted:2018-01-09
Foundation:National Natural Science Foundation of China(61805150);New Teacher Start-up Foundation of Shenzhen University(00000148)
Corresponding author:Professor QIAN Zhengfang. E-mail:zq001@szu.edu.cn
Citation:FAN Shuting,MA Yingyu,SHU Guoxiang, et al. The interaction of terahertz with water molecules: mechanism, applications, and new trends[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 200-206.(in Chinese)
基金项目:国家自然科学基金资助项目(61805150);深圳大学新引进教师科研启动资助项目(00000148)
作者简介:范姝婷(1989—),女,深圳大学助理教授、博士.研究方向:太赫兹技术的应用.
E-mail: shutingfan@szu.edu.cn
钱正芳(1959—),男,深圳大学特聘教授,博士生导师. 研究方向:微纳米材料结构和5G无线通信的毫米波太赫兹技术、芯片集成封装和可靠性技术.
E-mail: zq001@szu.edu.cn
引文:范姝婷,马莹玉,舒国响,等.太赫兹与水的相互作用:机理、应用和新趋势[J]. 深圳大学学报理工版,2019,36(2):200-206.
更新日期/Last Update: 2019-03-07