[1]夏良平,崔洪亮.基于金属开口环阵列的太赫兹各向异性超材料[J].深圳大学学报理工版,2019,(No.2(111-220)):152-156.[doi:10.3724/SP.J.1249.2019.02152]
 XIA Liangping and CUI Hongliang.Terahertz anisotropic metamaterials based on metal slit ring array[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):152-156.[doi:10.3724/SP.J.1249.2019.02152]
点击复制

基于金属开口环阵列的太赫兹各向异性超材料()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
期数:
2019年No.2(111-220)
页码:
152-156
栏目:
【专辑:太赫兹技术】
出版日期:
2019-03-20

文章信息/Info

Title:
Terahertz anisotropic metamaterials based on metal slit ring array
文章编号:
201902006
作者:
夏良平1崔洪亮2
1)长江师范学院电子信息工程学院,重庆 408100
2)中国科学院重庆绿色智能技术研究院应用物理研究中心,重庆 400714
Author(s):
XIA Liangping1 and CUI Hongliang2
1) School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, P.R.China
2) Center for Applied Physics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P.R.China
关键词:
太赫兹超材料金属开口环各向异性偏振转换双折射
Keywords:
terahertz metamaterial metallic slit ring anisotropy polarization conversion birefringence
分类号:
O441.4;O436.3
DOI:
10.3724/SP.J.1249.2019.02152
文献标志码:
A
摘要:
提出一种由金属开口环阵列结构构成的太赫兹各向异性超材料,通过有限元数值仿真,以及太赫兹透射光谱测试,对该结构在太赫兹波段的各向异性特征进行分析,证明了其因开口环结构的各向异性和产生太赫兹透射调制的各向异性.最后对该各向异性超材料的太赫兹偏振转换特性进行实验测试,获得与常规光学双折射材料规律一致的偏振转换结果.该人工结构材料有望应用于太赫兹玻片及隔离器等.
Abstract:
A terahertz anisotropic metamaterial based on metal slit ring array is proposed and discussed. The anisotropic characteristics of the structure are simulated by the finite element method and measured by terahertz transmission spectroscopy. The anisotropy of the structure due to the anisotropy of metal slit ring array and the developed anisotropic modulation of the terahertz transmission is proved. Finally, the terahertz polarization conversion characteristic of the anisotropic metamaterial is tested experimentally. And the polarization conversion results are obtained by converting the incident wave with linear deviation into its vertical polarization direction, which are consistent with the law of conventional optical birefringent materials. This kind of metamaterial is expected to be used in terahertz wave plates and isolators.

参考文献/References:

[1] 杨亚非, 丁文全, 祝春才,等. 光学各向异性聚合物分散液晶特性研究[J]. 光电子技术, 2018, 38(1): 40-44.
YANG Yafei, DING Wenquan, ZHU Chuncai, et al. Study on characteristics of optical anisotropic polymer dispersed liquid crystal[J]. Optoelectronic Technology, 2018, 38(1): 40-44.(in Chinese)
[2] 虞国华, 刘水华, 方罗珍,等. 偏振无关的楔型光隔离器插入损耗与反向隔离度分析[J]. 光学学报, 1997, 17(8): 1108-1112.
YU Guohua, LIU Shuihua, FANG Luozhen, et al. Loss and backward isolation of wedge-type polarization-independent optical isolator[J]. Acta Optica Sinica, 1997, 17(8): 1108-1112.(in Chinese)
[3] 葛廷武,陆丹,伍剑,等.高功率法拉第隔离器多模退偏特性[J].光子学报,2009, 38(10):2512-2515.
GE Tingwu, LU Dan, WU Jian, et al. Investigation on depolarization of high power faraday isolators with multi-mode incidence of lasers[J]. Acta Photonica Sinica, 2009, 38(10): 2512-2515.(in Chinese)
[4] 董波,赵启大,黄桂龄,等.级联双折射光纤环镜滤波特性的分析[J].光子学报,2007, 36(7):1289-1293.
DONG Bo, ZHAO Qida, HUANG Guiling, et al. Analysis of cascade filter characteristics with high birefringence fiber loop mirror[J]. Acta Photonica Sinica, 2007, 36(7): 1289-1293.(in Chinese)
[5] 庄欣欣,苏根博,贺友平,等.双折射晶体——重要的光功能材料[J].结构化学,2001, 20(4):291-293.
ZHUANG Xinxin, SU Genbo, HE Youping, et al. The properties of birefringence crystals used in optical isolator[J]. Chinese Journal of Structural Chemistry, 2001, 20(4): 291-293.(in Chinese)
[6] 张志东,范志新,黄锡珉.电控双折射液晶显示的动力学模拟计算[J].液晶与显示,1998(1):4-9.
ZHANG Zhidong, FAN Zhixin, HUANG Ximin. Dynamic simulated calculation for electrically controlled birefringence liquid crystal display[J]. Chinese Journal of Liquid Crystals and Displays, 1998(1): 4-9.(in Chinese)
[7] WOLFE R, FRATELLO V J, MCGLASHAN-POWELL M. Thin-film garnet materials with zero linear birefringence for magneto-optic waveguide devices[J]. Journal of Applied Physics, 1988, 63(8): 3099-3103.
[8] KAMINSKA K, ROBBIE K. Birefringent omnidirectional reflector[J]. Applied Optics, 2004, 43(7): 1570-1576.
[9] ISHIKAWA H, KONDO T. Birefringent phase matching in thin rectangular high-index-contrast waveguides[J]. Applied Physics Express, 2009, 2(4): 042202.
[10] BEYDAGHYAN G, KAMINSKA K, BROWN T, et al. Enhanced birefringence in vacuum evaporated silicon thin films[J]. Applied Optics, 2004, 43(28): 5343-5349.
[11] PURSEL S M, HORN M W. Prospects for nanowire sculptured-thin-film devices[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2007, 25(6): 2611-2615.
[12] 刘鑫,王玥,张丽颖,等.多壁碳纳米管薄膜在THz波段的传输与偏振特性[J].红外与激光工程,2017, 46(12):238-244.
LIU Xin, WANG Yue, ZHANG Liying, et al. Transmission and polarization properties of multi-walled carbon nanotubes film in terahertz waveband[J]. Infrared and Laser Engineering, 2017, 46(12): 238-244.(in Chinese)
[13] KUNDTZ N, SMITH D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9(2): 129-132.
[14] GUSEV V E, WRIGHT O B. Double-negative flexural acoustic metamaterial[J]. New Journal of Physics, 2014, 16(12): 123053.
[15] BURGOS S P, DE WAELE R, POLMAN A, et al. A single-layer wide-angle negative-index metamaterial at visible frequencies[J]. Nature Materials, 2010, 9(5): 407-412.
[16] HALIR R, BOCK P J, CHEBEN P, et al. Waveguide sub-wavelength structures: a review of principles and applications[J]. Laser & Photonics Reviews, 2015, 9(1): 25-49.
[17] EMOTO A, ONO H, OKADA M, et al. Form birefringence in intrinsic birefringent media possessing a subwavelength structure[J]. Applied Optics, 2010, 49(23):4355-4361.
[18] ARBABI E, ARBABI A, KAMALI S M, et al. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms[J]. Optics Express, 2016, 24(16): 18468.
[19] WANG Lei, JIANG Suhua, HU Haifeng, et al. Artificial birefringent metallic planar structures for terahertz wave polarization manipulation[J]. Optics Letters, 2014, 39(2): 311-314.
[20] XU Luhua, WANG Yun, KUMAR A, et al. Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI[J]. IEEE Photonics Technology Letters, 2018, 30(4): 403-406.
[21] 毛洪艳,许红梅,夏良平,等.大面积低损耗薄膜衬底太赫兹偏振片[J].光子学报,2015, 44(9):124-128.
MAO Hongyan, XU Hongmei, XIA Liangping, et al. A large area and low loss thin-film terahertz polarizer[J]. Acta Photonica Sinica, 2015, 44(9): 124-128.(in Chinese)

相似文献/References:

[1]张敏,权润爱,苏红,等.光泵连续太赫兹波在生物成像中的应用研究(英文)[J].深圳大学学报理工版,2014,31(No.2(111-220)):160.[doi:10.3724/SP.J.1249.2014.02160]
 Zhang Min,Quan Runai,Su Hong,et al.Investigation of optically pumped continuous terahertz laser in biological imaging[J].Journal of Shenzhen University Science and Engineering,2014,31(No.2(111-220)):160.[doi:10.3724/SP.J.1249.2014.02160]
[2]舒国响,曹利红,熊浩,等.0.24 THz带状注行波放大管交错栅慢波结构研究[J].深圳大学学报理工版,2019,(No.2(111-220)):128.[doi:10.3724/SP.J.1249.2019.02128]
 SHU Guoxiang,CAO Lihong,XIONG Hao,et al.A staggered double vane slow wave structure of 0.24 THz sheet beam travelling wave tube[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):128.[doi:10.3724/SP.J.1249.2019.02128]
[3]赵超,刘文鑫,王勇,等.0.5 THz返波管电子光学系统设计[J].深圳大学学报理工版,2019,(No.2(111-220)):135.[doi:10.3724/SP.J.1249.2019.02135]
 ZHAO Chao,LIU Wenxin,et al.Design of electron optics system for 0.5 THz backward wave oscillator[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):135.[doi:10.3724/SP.J.1249.2019.02135]
[4]符张龙,邵棣祥,张真真,等.太赫兹频率上转换成像器件研究[J].深圳大学学报理工版,2019,(No.2(111-220)):147.[doi:10.3724/SP.J.1249.2019.02147]
 FU Zhanglong,SHAO Dixiang,ZHANG Zhenzhen,et al.Terahertz frequency up-conversion imaging devices[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):147.[doi:10.3724/SP.J.1249.2019.02147]
[5]宋瑞良,刘一波.一种超高速太赫兹测试信号产生器的设计[J].深圳大学学报理工版,2019,(No.2(111-220)):176.[doi:10.3724/SP.J.1249.2019.02176]
 SONG Ruiliang and LIU Yibo.A signal generator for ultra-high speed terahertz testing[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):176.[doi:10.3724/SP.J.1249.2019.02176]
[6]唐亚华,沈仕远,汪璐,等.基于VO2薄膜的太赫兹可调超表面结构[J].深圳大学学报理工版,2019,(No.2(111-220)):182.[doi:10.3724/SP.J.1249.2019.02182]
 TANG Yahua,SHEN Shiyuan,WANG Lu,et al.Terahertz adjustable metasurface structure based on vanadium dioxide thin film[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):182.[doi:10.3724/SP.J.1249.2019.02182]

备注/Memo

备注/Memo:
Received:2018-12-07;Accepted:2018-12-29
Foundation:National Natural Science Foundation of China (61775213, 61875196)
Corresponding author:Associate professor XIA Liangping.E-mail: xialp@yznu.edu.cn
Citation:XIA Liangping, CUI Hongliang.Terahertz anisotropic metamaterials based on metal slit ring array[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 152-156.(in Chinese)
基金项目:国家自然科学基金资助项目(61775213, 61875196)
作者简介:夏良平(1986—),男,长江师范学院副教授、博士.研究方向:微纳光学.E-mail:xialp@yznu.edu.cn
引文:夏良平,崔洪亮.基于金属开口环阵列的太赫兹各向异性超材料[J]. 深圳大学学报理工版,2019,36(2):152-156.
更新日期/Last Update: 2019-03-07