[1]赵超,刘文鑫,王勇,等.0.5 THz返波管电子光学系统设计[J].深圳大学学报理工版,2019,(No.2(111-220)):135-139.[doi:10.3724/SP.J.1249.2019.02135]
 ZHAO Chao,LIU Wenxin,et al.Design of electron optics system for 0.5 THz backward wave oscillator[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):135-139.[doi:10.3724/SP.J.1249.2019.02135]

0.5 THz返波管电子光学系统设计()




Design of electron optics system for 0.5 THz backward wave oscillator
ZHAO Chao1 2 LIU Wenxin1 2 WANG Yong1 2 GUO Xin1 and WANG Meng1
1) Key Laboratory of High Power Microwave Sources and Technologies, Chinese Academy of Sciences, Beijing 100190, P.R.China
2) University of Chinese Academy of Sciences, Beijing 100190, P.R.China
terahertz electron optics system passing rate of electron beam electron gun cathode permanent magnetic focusing system
电子光学系统是真空电子器件的重要组成部分,主要包括电子枪、聚焦系统和收集极.电子光学系统的电子注聚焦和传输特性对器件性能指标至关重要,直接影响器件的输出功率、增益和带宽等特性.本研究设计0.5 THz返波管电子光学系统,详细阐述电子枪和均匀永磁聚焦磁场的设计过程.根据返波管高频结构PIC(particle-in-cell)热腔模拟计算结果,设计符合电流发射要求且束流品质良好的电子枪,并结合理论分析,设计与之匹配的均匀永磁聚焦磁场.该电子光学系统主要工作和尺寸参数为:工作电压为23 kV时,阴极发射电流大于100 mA,电子通道的长度和直径分别为26 mm和0.2 mm.
Electron optics system (EOS) is an important part of a vacuum electronic device (VED) which includes electron gun, focusing system, and collector. The characteristics of focusing and transmission of electron beam in the EOS can affect the performances of VED, such as power, gain and bandwidth of device, etc. In this paper, we design the EOS for 0.5 THz backward wave oscillator (BWO), and describe the design procedures of the electron gun and the uniform permanent magnetic focusing system in detail. Firstly, based on the results of particle-in-cell (PIC) simulation, we design the electron gun which is satisfied with the required current amplitude and with good beam quality. Secondly, combined with the theoretical analysis, we devise the structure of uniform permanent magnetic focusing system matching the electron beam. The optimum parameters of EOS are as follows: the current emitted from the surface of cathode is greater than 100 mA at the operating voltage 23 kV, the length and diameter of the drift tube are 26 mm and 0.2 mm, respectively.


[1] 何明霞,陈涛.太赫兹科学技术在生物医学中的应用研究[J].电子测量与仪器学报,2012, 26(6):471-483.
HE Mingxia, CHEN Tao. Application of terahertz science and technology in biology and medicine research[J]. Journal of Electronic Measurement and Instrument, 2012, 26(6): 471-483.(in Chinese)
[2] 郑新,刘超.太赫兹技术的发展及在雷达和通讯系统中的应用(Ⅱ)[J].微波学报,2011, 27(1):1-5.
ZHENG Xin, LIU Chao. Recent development of THz technology and its application in radar and communication system[J]. Journal of Microwaves, 2011, 27(1): 1-5.(in Chinese)
[3] 戚祖敏.太赫兹波在军事领域中的应用研究[J].红外,2008(12):1-4.
QI Zumin. Study of application of THz wave in military field[J]. Infrared, 2008 (12): 1-4.(in Chinese)
[4] BASTEN M A, TUCEK J C, GALLAGHER D A, et al. 233 GHz high power amplifier development at Northrop Grumman[C]// IEEE International Vacuum Electronics Conference (IVEC). Monterey, USA: IEEE, 2016: 1-2.
[5] 傅文杰,关晓通,陈驰,等. 220 GHz高功率同轴谐振腔回旋管[J]. 红外与毫米波学报, 2014, 33(6):613-618.
FU Wenjie, GUAN Xiaotong, CHEN Chi, et al. A 220 GHz high-power coaxial cavity gyrotron[J]. Journal of Infrared and Millimeter Waves, 2014, 33(6): 613-618.(in Chinese)
[6] 丁耀根.大功率速调管的设计制造和应用[M].北京:国防工业出版社,2010: 133-145.
DING Yaogen. Design manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010: 133-145.(in Chinese)
[7] VLIEKS A E. Breakdown phenomena in high-power klystrons[J]. IEEE Transactions on Electrical Insulation, 1989, 24(6): 1023-1028.
[8] FUKUDA S, HAYASHI K, MAEDA S, et al. Performance of a high-power klystron using a BI cathode in the KEK electron linac[J]. Applied Surface Science, 1999, 146(1/2/3/4): 84-88.
[9] LEE T G, KONRAD G T, OKAZAKI Y, et al. The design and performance of a 150-MW klystron at S-Band[J]. IEEE Transactions on Plasma Science, 1985, 13(6): 545-552.
[10] GILMOUR A S Jr. 速调管、行波管、磁控管、正交场放大器和回旋管[M].丁耀根,张兆传, 等, 译. 北京:国防工业出版社,2012:97.
GILMOUR A S Jr. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons[M]. DING Yaogen, ZHANG Zhaochuan, et al. transl. Beijing: National Defense Industry Press, 2012:97.(in Chinese)
[11] 丁耀根.大功率速调管的理论与计算模拟[M].北京:国防工业出版社, 2008: 174-176.
DING Yaogen. Theory and computer simulation of high power klystron[M]. Beijing: National Defense Industry Press, 2008: 174-176.(in Chinese)


 Zhang Min,Quan Runai,Su Hong,et al.Investigation of optically pumped continuous terahertz laser in biological imaging[J].Journal of Shenzhen University Science and Engineering,2014,31(No.2(111-220)):160.[doi:10.3724/SP.J.1249.2014.02160]
 DENG Zhi-cheng and YANG Qin-lao.A digital image approach to distortion correction of image intensifiers[J].Journal of Shenzhen University Science and Engineering,2006,23(No.2(111-220)):258.
[3]舒国响,曹利红,熊浩,等.0.24 THz带状注行波放大管交错栅慢波结构研究[J].深圳大学学报理工版,2019,(No.2(111-220)):128.[doi:10.3724/SP.J.1249.2019.02128]
 SHU Guoxiang,CAO Lihong,XIONG Hao,et al.A staggered double vane slow wave structure of 0.24 THz sheet beam travelling wave tube[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):128.[doi:10.3724/SP.J.1249.2019.02128]
 XIA Liangping and CUI Hongliang.Terahertz anisotropic metamaterials based on metal slit ring array[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):152.[doi:10.3724/SP.J.1249.2019.02152]
 FU Zhanglong,SHAO Dixiang,ZHANG Zhenzhen,et al.Terahertz frequency up-conversion imaging devices[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):147.[doi:10.3724/SP.J.1249.2019.02147]
 SONG Ruiliang and LIU Yibo.A signal generator for ultra-high speed terahertz testing[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):176.[doi:10.3724/SP.J.1249.2019.02176]
 TANG Yahua,SHEN Shiyuan,WANG Lu,et al.Terahertz adjustable metasurface structure based on vanadium dioxide thin film[J].Journal of Shenzhen University Science and Engineering,2019,(No.2(111-220)):182.[doi:10.3724/SP.J.1249.2019.02182]


Foundation:National Natural Science Foundation of China (11675181, U1832193, 61831101); National Key R&D Program of China (2017YFA0701003)
Corresponding author:Professor LIU Wenxin.E-mail: lwenxin@mail.ie.ac.cn
Citation:ZHAO Chao,LIU Wenxin,WANG Yong,et al.Design of electron optics system for 0.5 THz backward wave oscillator[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 135-139.(in Chinese)
基金项目:国家自然科学基金资助项目(11675181, U1832193, 61831101);国家重点研究计划资助项目(2017YFA 0701003)
引文:赵超,刘文鑫,王勇,等.0.5 THz返波管电子光学系统设计[J]. 深圳大学学报理工版,2019,36(2):135-139.
更新日期/Last Update: 2019-03-07