[1]舒国响,曹利红,熊浩,等.0.24 THz带状注行波放大管交错栅慢波结构研究[J].深圳大学学报理工版,2019,36(No.2(111-220)):128-134.[doi:10.3724/SP.J.1249.2019.02128]
 SHU Guoxiang,CAO Lihong,XIONG Hao,et al.A staggered double vane slow wave structure of 0.24 THz sheet beam travelling wave tube[J].Journal of Shenzhen University Science and Engineering,2019,36(No.2(111-220)):128-134.[doi:10.3724/SP.J.1249.2019.02128]
点击复制

0.24 THz带状注行波放大管交错栅慢波结构研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年No.2(111-220)
页码:
128-134
栏目:
【专辑:太赫兹技术】
出版日期:
2019-03-20

文章信息/Info

Title:
A staggered double vane slow wave structure of 0.24 THz sheet beam travelling wave tube
文章编号:
201901002
作者:
舒国响1曹利红2熊浩2陈乐2范姝婷2何文龙1钱正芳2
1)深圳大学电子与信息工程学院,广东深圳 518060
2)深圳大学物理与光电工程学院,广东深圳 518060
Author(s):
SHU Guoxiang1 CAO Lihong2 XIONG Hao2 CHEN Le2 FAN Shuting2 HE Wenlong1 and QIAN Zhengfang2
1) College of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
真空电子学太赫兹行波管交错栅慢波结构宽频带大功率
Keywords:
vacuum electronics terahertz travelling wave tube staggered vane slow wave structure broad bandwidth high power
分类号:
TN124.2
DOI:
10.3724/SP.J.1249.2019.02128
文献标志码:
A
摘要:
大功率和宽频带是太赫兹放大器追求的两个核心指标,基于交错栅慢波结构的带状注行波管兼具两者,是一种非常有竞争力的太赫兹放大器.研究交错栅慢波结构的色散特性、耦合阻抗特性、传输反射特性以及注波互作用特性,通过优化结构参数以及引入介质衰减器,实现该管宽频带内的大功率稳定输出.仿真结果表明,该管在220~260 GHz的输出功率可达105 W以上.所做工作为研究宽频带和大功率太赫兹放大管奠定良好基础.
Abstract:
High power and broad bandwidth are two core targets for a terahertz amplifier. A sheet beam travelling wave tube based on a staggered double vane slow wave structure possesses the two advantages mentioned above and is a very competitive high power terahertz amplifier. The dispersion characteristic, coupling impedance property, transmission and reflection properties and beam wave interaction property are investigated. The tube achieves high output power in a very broad frequency range by optimizing the structural parameters and introducing a dielectric attenuator. Simulation results show that the tube can generate the output power of more than 105 W in the frequency range from 220 GHz to 260 GHz. This work has laid a good foundation for the study of terahertz amplifiers with broad bandwidth and high power.

参考文献/References:

[1] BOOSKE J H, DOBBS R J, JOYE C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 54-75.
[2] 洪伟,余超,陈继新,等.毫米波与太赫兹技术[J].中国科学:信息科学,2016, 46(8):1086-1107.
HONG Wei, YU Chao, CHEN Jixin, et al. Millimeter wave and terahertz technology[J]. Science China Information Sciences, 2016, 46(8): 1086-1107.(in Chinese)
[3] BAIG A, GAMZINA D, KIMURA T, et al. Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 2390-2397.
[4] JOYE C D, CALMAE J P, GAREN M, et al. UV-LIGA microfabrication of 220 GHz sheet beam amplifier gratings with SU-8 photoresists[J]. Journal of Micromechanics and Microengineering, 2010, 20(12): 125016.
[5] PERSHING D E, NGUYEN K T, ABE D K, et al. Demonstration of a wideband 10-kW Ka-band sheet beam TWT amplifier[J]. IEEE Transactions on Electron Devices, 2014, 61(6): 1637-1642.
[6] GUO Guo, WEI Yanyu, YUE Lingna, et al. A research of W-band folded waveguide traveling wave tube with elliptical sheet electron beam[J]. Physics of Plasmas, 2012, 19(9): 093117.
[7] ZHAO Jinfeng, GAMZINA D, LI Na, et al. Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun[J]. IEEE Transactions on Electron Devices, 2012, 59(6): 1792-1798.
[8] RUAN Cunjun, ZHANG Huafeng, TAO Jian, et al. Investigation on stability of the beam-wave interactions for G-band staggered double vane TWT[C]// The 43rd International Conference on Infrared, Millimeter, and Terahertz Waves. Nagoya, Japan: IEEE, 2018: 1-2.
[9] WANG Jianxun, SHU Guoxiang, LIU Guo, et al. Ultra-wideband coalesced-mode operation for a sheet-beam traveling-wave tube[J]. IEEE Transactions Electron Devices, 2016, 63(1): 504-511.
[10] SHI Xianbo, WANG Zhanliang, TANG Tao, et al. Theoretical and experimental research on a novel small tunable PCM system in staggered double vane TWT[J]. IEEE Transactions on Electron Devices, 2015, 62(12): 4258-4263.
[11] SHU Guoxiang, WANG Jianxun, LIU Guo, et al. An improved slow-wave structure for the sheet-beam traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2016, 63(5): 2089-2096.
[12] SHU Guoxiang, WANG Jianxun, LIU Guo, et al. Study of performance improvement for a Q-band sheet-beam traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2018, 65(9): 3970-3975.
[13] RUAN Cuncun, ZHANG Muwu, DAI Jun, et al. W-Band multiple beam staggered double-vane traveling wave tube with broad band and high output power[J]. IEEE Transactions on Plasma Science, 2015, 43(7): 2132-2139.
[14] SHU Guoxiang, LIU Guo, QIAN Zhengfang. Simulation study of a high-order mode terahertz radiation source based on an orthogonal grating waveguide and multiple sheet electron beams[J]. Optics Express, 2018, 26(7): 8040-8048.
[15] ZHANG Yabin, WANG Zhanliang, ZHOU Qing, et al. A high-power single rectangular grating sheet electron beam traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2016, 63(8): 3262-3269.
[16] LU Zhigang, SU Zhicheng, WEI Yanyu. Design and cold test of period-tapered double-ridge-loaded folded waveguide slow wave structure for Ka band TWTs[J]. AIP Advances, 2018, 8(5): 055105.
[17] HU Linlin, SONG Rui, MA Guowu, et al. Experimental demonstration of a 0.34-THz backward-wave oscillator with a sinusoidally corrugated slow-wave structure[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2149-2155.
[18] CARLSTEN B E, RUSSELL S J, LAWRENCE M. Technology development for a mm-wave sheet beam traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2005, 33(1): 85-93.
[19] 郑源. 交错双栅带状注行波管的研究与设计[D]. 成都:电子科技大学,2017.
ZHENG Yuan. Research and design of staggered double grating sheet beam traveling wave tubes[D]. Chengdu: University of Electronic Science and Technology of China, 2017.(in Chinese)
[20] ZHENG Yuan, GAMZINA D, LUHMANN N C. 0.2-THz dual mode sheet beam traveling wave tube[J]. IEEE Transactions on Electron Devices, 2014, 64(4): 1767-1773.

相似文献/References:

[1]张敏,权润爱,苏红,等.光泵连续太赫兹波在生物成像中的应用研究(英文)[J].深圳大学学报理工版,2014,31(No.2(111-220)):160.[doi:10.3724/SP.J.1249.2014.02160]
 Zhang Min,Quan Runai,Su Hong,et al.Investigation of optically pumped continuous terahertz laser in biological imaging[J].Journal of Shenzhen University Science and Engineering,2014,31(No.2(111-220)):160.[doi:10.3724/SP.J.1249.2014.02160]
[2]赵超,刘文鑫,王勇,等.0.5 THz返波管电子光学系统设计[J].深圳大学学报理工版,2019,36(No.2(111-220)):135.[doi:10.3724/SP.J.1249.2019.02135]
 ZHAO Chao,LIU Wenxin,et al.Design of electron optics system for 0.5 THz backward wave oscillator[J].Journal of Shenzhen University Science and Engineering,2019,36(No.2(111-220)):135.[doi:10.3724/SP.J.1249.2019.02135]
[3]夏良平,崔洪亮.基于金属开口环阵列的太赫兹各向异性超材料[J].深圳大学学报理工版,2019,36(No.2(111-220)):152.[doi:10.3724/SP.J.1249.2019.02152]
 XIA Liangping and CUI Hongliang.Terahertz anisotropic metamaterials based on metal slit ring array[J].Journal of Shenzhen University Science and Engineering,2019,36(No.2(111-220)):152.[doi:10.3724/SP.J.1249.2019.02152]
[4]符张龙,邵棣祥,张真真,等.太赫兹频率上转换成像器件研究[J].深圳大学学报理工版,2019,36(No.2(111-220)):147.[doi:10.3724/SP.J.1249.2019.02147]
 FU Zhanglong,SHAO Dixiang,ZHANG Zhenzhen,et al.Terahertz frequency up-conversion imaging devices[J].Journal of Shenzhen University Science and Engineering,2019,36(No.2(111-220)):147.[doi:10.3724/SP.J.1249.2019.02147]
[5]宋瑞良,刘一波.一种超高速太赫兹测试信号产生器的设计[J].深圳大学学报理工版,2019,36(No.2(111-220)):176.[doi:10.3724/SP.J.1249.2019.02176]
 SONG Ruiliang and LIU Yibo.A signal generator for ultra-high speed terahertz testing[J].Journal of Shenzhen University Science and Engineering,2019,36(No.2(111-220)):176.[doi:10.3724/SP.J.1249.2019.02176]
[6]唐亚华,沈仕远,汪璐,等.基于VO2薄膜的太赫兹可调超表面结构[J].深圳大学学报理工版,2019,36(No.2(111-220)):182.[doi:10.3724/SP.J.1249.2019.02182]
 TANG Yahua,SHEN Shiyuan,WANG Lu,et al.Terahertz adjustable metasurface structure based on vanadium dioxide thin film[J].Journal of Shenzhen University Science and Engineering,2019,36(No.2(111-220)):182.[doi:10.3724/SP.J.1249.2019.02182]

备注/Memo

备注/Memo:
Received:2018-12-10;Accepted:2018-01-14
Foundation:Free Exploration Research Foundation of Shenzhen (201803053000229); New Teacher Start-up Foundation of Shenzhen University (2018046)
Corresponding author:Professor HE Wenlong. E-mail: wenlong.he@szu.edu.cn. Professor QIAN Zhengfang. E-mail: zq001@szu.edu.cn
Citation:SHU Guoxiang,CAO Lihong,XIONG Hao,et al.A staggered double vane slow wave structure of 0.24 THz sheet beam travelling wave tube[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 128-134.(in Chinese)
作者简介:舒国响(1989—),男,深圳大学助理教授、博士.研究方向:大功率毫米波器件、太赫兹辐射器、毫米波无源器件.E-mail:gxshu@szu.edu.cn
何文龙(1963—),男,深圳大学特聘教授、博士生导师. 研究方向:大功率毫米波器件、太赫兹辐射器、毫米波及太赫兹技术的应用. E-mail:wenlong.he@szu.edu.cn
钱正芳(1959—),男,深圳大学特聘教授、博士生导师. 研究方向:微纳米材料和5G无线通信的毫米波太赫技术、芯片集成封装和可靠性技术.E-mail:zq001@szu.edu.cn
引文:舒国响,曹利红,熊浩,等.0.24 THz带状注行波放大管交错栅慢波结构研究[J]. 深圳大学学报理工版,2019,36(2):128-134.
更新日期/Last Update: 2019-03-07