[1]洪舒贤,郑帆,史桂昀,等.钢筋通电锈蚀过程电流有效性分析[J].深圳大学学报理工版,2019,36(1):94-100.[doi:10.3724/SP.J.1249.2019.01094]
 HONG Shuxian,ZHENG Fan,SHI Guiyun,et al.Investigation on current efficiency for current accelerated corrosion of reinforcing steel[J].Journal of Shenzhen University Science and Engineering,2019,36(1):94-100.[doi:10.3724/SP.J.1249.2019.01094]
点击复制

钢筋通电锈蚀过程电流有效性分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第36卷
期数:
2019年第1期
页码:
94-100
栏目:
土木建筑工程
出版日期:
2019-01-20

文章信息/Info

Title:
Investigation on current efficiency for current accelerated corrosion of reinforcing steel
作者:
洪舒贤郑帆史桂昀邢锋董必钦
深圳大学土木工程学院,广东省滨海土木工程耐久性重点实验室,广东深圳518060
Author(s):
HONG Shuxian ZHENG Fan SHI Guiyun XING Feng and DONG Biqin
School of Civil Engineering, Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
建筑材料钢筋混凝土通电加速锈蚀电流有效系数法拉第定律X射线断层成像
Keywords:
building materials reinforced concrete impressed-current accelerated corrosion current effective coefficient Faraday’s law X-ray micro-computed tomography
分类号:
TU 528
DOI:
10.3724/SP.J.1249.2019.01094
摘要:
外加电流加速锈蚀是钢筋锈蚀研究中广泛应用的方法.为探究外加电流在钢筋加速锈蚀过程中的实际消耗,通过微米级X射线计算机断层扫描(X-ray computed tomography,XCT)技术对砂浆试块内钢筋的通电加速锈蚀过程进行跟踪测试,实现不同阶段钢筋锈蚀质量损失的量化,进而获得各个阶段电流有效系数.实验结果表明,XCT技术可进行钢筋锈蚀过程的无损跟踪、锈蚀形貌表征和锈蚀参数量化.通过电流有效系数的量化可得,受钢筋脱钝、电解水反应和钢筋自然锈蚀的影响,不同锈蚀阶段的电流有效系数存在差别.保护层在开裂前发生钢筋脱钝和电解水反应,电流有效系数偏低;开裂后由于钢筋自然锈蚀,电流有效系数偏高.
Abstract:
Impressed-current accelerated corrosion has been widely used in the study of steel corrosion. To investigate the actual consumption of impressed current during the accelerated corrosion process, micro-level X-ray computed tomography (XCT) technique is employed to trace the accelerated corrosion process of steel in a mortar sample to quantitatively analyze the mass loss of steel in different stages, with which current effective coefficient of each stage can be further calculated. The experiment results show that XCT technique can achieve non-destructive tracking of the corrosion process, visual characterization of corrosion morphology, and quantitative calculation of corrosion parameters. The calculation of current effective coefficient indicates that due to the influence of depassivation of steel, electrolysis of water and natural corrosion, the current effective coefficient varies in different stages. Before the cracking of concrete cover, depassivation and electrolysis lower the coefficient. After cracking the coefficient is magnified by natural corrosion.

相似文献/References:

[1]张亚芳,陈江平.不同掺量玻璃纤维增强水泥细观数值研究[J].深圳大学学报理工版,2010,27(1):103.
 ZHANG Ya-fang and CHEN Jiang-ping.Numerical study on glass fiber reinforced cement with different incorporation rates[J].Journal of Shenzhen University Science and Engineering,2010,27(1):103.
[2]周海俊,米红雨,谭也平.锈蚀-疲劳作用下的砼梁桥失效概率分析[J].深圳大学学报理工版,2010,27(1):109.
 ZHOU Hai-jun,MI Hong-yu,and TAN Ye-ping.Failure probability analysis of reinforced concrete bridges under coupled corrosion fatigue effects[J].Journal of Shenzhen University Science and Engineering,2010,27(1):109.
[3]管民生,韩大建,杜宏彪,等.钢筋混凝土框架结构的抗震性能指标研究[J].深圳大学学报理工版,2011,28(No.3(189-282)):200.
 GUAN Min-sheng,HAN Da-jian,DU Hong-biao,et al.A new seismic performance index for reinforced concrete frame structures[J].Journal of Shenzhen University Science and Engineering,2011,28(1):200.
[4]刘贤淼,江泽慧,费本华.玻璃纤维布增强造纸脱墨污泥纤维板性能研究[J].深圳大学学报理工版,2012,29(No.4(283-376)):371.[doi:10.3724/SP.J.1249.2012.04371]
 LIU Xian-miao,JIANG Ze-hui,and FEI Ben-hua.Paper deinking sludge fiberboard reinforced by fiberglass fabric[J].Journal of Shenzhen University Science and Engineering,2012,29(1):371.[doi:10.3724/SP.J.1249.2012.04371]
[5]付晔,李庆华,徐世烺.高温后纳米改性水泥基材料的残余抗折强度[J].深圳大学学报理工版,2014,31(2):187.[doi:10.3724/SP.J.1249.2014.02187]
 Fu Ye,Li Qinghua,and Xu Shilang.The effects of high temperature on flexural strengths of high performance nano-modified cementitious composites[J].Journal of Shenzhen University Science and Engineering,2014,31(1):187.[doi:10.3724/SP.J.1249.2014.02187]
[6]彭家惠,刘先锋,张建新,等.磷酸盐对α半水脱硫石膏凝结硬化的作用机理[J].深圳大学学报理工版,2014,31(4):388.[doi:10.3724/SP.J.1249.2014.04388]
 Peng Jiahui,Liu Xianfeng,Zhang Jianxin,et al.Mechanisms of phosphate on the hydration and hardening of α-hemihydrate desulfurization gypsum[J].Journal of Shenzhen University Science and Engineering,2014,31(1):388.[doi:10.3724/SP.J.1249.2014.04388]
[7]倪卓,邢锋,石开勇,等.微胶囊对水泥自修复复合材料微观结构的影响[J].深圳大学学报理工版,2015,32(1):68.[doi:10.3724/SP.J.1249.2015.01068]
 Ni Zhuo,Xing Feng,Shi Kaiyong,et al.Influence of microcapsule on microcosmic structure of self-healing cementitious composite[J].Journal of Shenzhen University Science and Engineering,2015,32(1):68.[doi:10.3724/SP.J.1249.2015.01068]
[8]刘昱清,董鹏,滕晓娟,等.基于X-ray μCT技术的钢筋锈胀特征分析[J].深圳大学学报理工版,2017,34(6):618.[doi:10.3724/SP.J.1249.2017.06618]
 Liu Yuqing,Dong Peng,Teng Xiaojuan,et al.Characterization of corrosion expansion feature of steel bar by means of X-ray μCT[J].Journal of Shenzhen University Science and Engineering,2017,34(1):618.[doi:10.3724/SP.J.1249.2017.06618]
[9]丁铸,孙晨,戴梦希.磷酸盐水泥砂浆作为锚固胶的性能研究[J].深圳大学学报理工版,2018,35(2):132.[doi:10.3724/SP.J.1249.2018.02132]
 DING Zhu,SUN Chen,and DAI Mengxi.Properties of phosphate cement mortar as an anchorage adhesive[J].Journal of Shenzhen University Science and Engineering,2018,35(1):132.[doi:10.3724/SP.J.1249.2018.02132]
[10]刘斌清,仵江涛,陈华鑫,等.多聚磷酸改性沥青的路用性能及机理分析[J].深圳大学学报理工版,2018,35(3):292.[doi:10.3724/SP.J.1249.2018.03292]
 LIU Binqing,WU Jiangtao,et al.Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J].Journal of Shenzhen University Science and Engineering,2018,35(1):292.[doi:10.3724/SP.J.1249.2018.03292]
[11]童芸芸,叶良,马超.钢筋腐蚀产物实时检测的再钝化机理分析[J].深圳大学学报理工版,2017,34(1):75.[doi:10.3724/SP.J.1249.2017.01075]
 Tong Yunyun,Ye Liang,and Ma Chao.Real time analysis on repassivation mechanism of steel rebar corrosion products[J].Journal of Shenzhen University Science and Engineering,2017,34(1):75.[doi:10.3724/SP.J.1249.2017.01075]

更新日期/Last Update: 2019-01-30