参考文献/References:
[1] 刘秀婷,杨军,程仲平,等.油田产量预测的新方法及其应用[J].石油勘探与开发,2002(4):74-76.
LIU Xiuting, YANG Jun, CHENG Zhongping, et al. A new method of predicting oilfield output and its application[J]. Petroleum Exploration and Development, 2002(4): 74-76.(in Chinese)
[2] 刘晓华,邹春梅,姜艳东,等.现代产量递减分析基本原理与应用[J].天然气工业,2010,30(5):50-54.
LIU Xiaohua, ZOU Chunmei, JIANG Yandong, et al. Theory and application of modern production decline analysis[J]. Natural Gas Industry, 2010, 30(5): 50-54.(in Chinese)
[3] 钟仪华.特高含水油田开发规划动态预测方法研究[D].成都:西南石油大学,2008.
ZHONG Yihua. The study of dynamic prediction methods for oilfield development programming in ulter-high water-cut stage [J]. Chengdu: Southwest Petroleum University, 2008.(in Chinese)
[4] 马林茂,李德富,郭海湘,等.基于遗传算法优化BP神经网络在原油产量预测中的应用:以大庆油田BED试验区为例[J].数学的实践与认识,2015,45(24):117-128.
MA Linmao, LI Defu, GUO Haixiang, et al. BP neural network based on genetic algorithm applied in crude oil production forecast: taking the BED test area of the Daqing Oilfield as an example[J]. Mathematics in Practice and Theory, 2015, 45(24): 117-128.(in Chinese)
[5] 钟仪华,林旭旭,刘雨鑫.基于多元混沌时间序列的油田产量预测模型[J].数学的实践与认识,2016,46(6):99-105.
ZHONG Yihua, LIN Xuxu, LIU Yuxin. The oilfield output prediction model based on multivariate chaotic time series[J]. Mathematics in Practice and Theory, 2016, 46(6): 99-105.(in Chinese)
[6] 马新.基于灰色系统与核方法的油藏动态预测方法研究[D].成都:西南石油大学,2016.
MA Xin. Study on dynamical prediction methods based on grey system and kernel method[D]. Chengdu: Southwest Petroleum University, 2016.(in Chinese)
[7] EDIGER V S, AKAR S, UURLU B. Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model[J]. Energy Policy, 2006, 34(18): 3836-3846.
[8] 王滨,赵伟,计小宇,等.基于传递函数模型的油田产油量预测方法[J].油气地质与采收率,2014,21(5):77-80.
WANG Bin, ZHAO Wei, JI Xiaoyu, et al. Oilfield output prediction method based on transfer function model[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(5): 77-80.(in Chinese)
[9] FRAUSTO-SOLS J, CHI-CHIM M, SHEREMETOV L. Forecasting oil production time series with a population-based simulated annealing method[J]. Arabian Journal for Science and Engineering, 2015, 40(4): 1081-1096.
[10] HARVEY A C. Forecasting, structural time series models and the Kalman filter[M]. Cambridge, UK: Cambridge University Press, 1990.
[11] XU Dongwei, WANG Yongdong, JIA Limin, et al. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 287-302..
[12] 王燕.应用时间序列分析[M].4版.北京:中国人民大学出版社,2015.
WANG Yan. Applied time series analysis[M]. 4th ed. Beijing: China Renmin University Press, 2015.(in Chinese)
[13] XIN Jingzhou, ZHOU Jianting, YANG S X, et al. Bridge structure deformation prediction based on GNSS data using Kalman-ARIMA-GARCH model[J]. Sensors, 2018, 18(1): 298.
[14] JANSSON M, STOICA P. Optimal Yule walker method for pole estimation of ARMA signals[C]// In: 13th IFAC Sympium on Systemium Identification. Rotterdam. Netherlands:[s. n.], 2003, 36(16):1891-1895.
[15] 邓露,张晓峒.ADF检验中滞后长度的选择——基于ARIMA(0, 1, q)过程的模拟证据[J].数量经济技术经济研究,2008(9):126-138.
DENG Lu, ZHANG Xiaotong. The lag length selection in ADF test: simulation evidence from an ARIMA (0, 1, q) process[J]. The Journal of Quantitative & Technical Economics, 2008(9):126-138.(in Chinese)
[16] HO S L, XIE M, GOH T N. A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction[J]. Computers & Industrial Engineering, 2002, 42(2/3/4):371-375.
[17] LIU Hui, TIAN Hongqi, LI Yanfei. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J]. Applied Energy, 2012, 98(1): 415-424.
相似文献/References:
[1]罗建新,张烈辉,赖南君,等.两区线性复合油藏产能典型理论曲线分析[J].深圳大学学报理工版,2011,28(No.5(377-470)):384.
LUO Jian-xin,ZHANG Lie-hui,LAI Nan-jun,et al.Typical deliverability curve analysis in bi-zonal linear composite reservoirs[J].Journal of Shenzhen University Science and Engineering,2011,28(6):384.
[2]姚同玉,李继山,黄延章.温度和有效应力对低渗储层孔渗性质的影响[J].深圳大学学报理工版,2012,29(No.2(095-188)):154.[doi:10.3724/SP.J.1249.2012.02154]
YAO Tong-yu,LI Ji-shan,and HUANG Yan-zhang.Effects of temperature and stress on porosity and permeability of low permeability reservoir[J].Journal of Shenzhen University Science and Engineering,2012,29(6):154.[doi:10.3724/SP.J.1249.2012.02154]
[3]王传飞,吴光焕,韦涛,等.薄层特超稠油油藏双水平井SAGD开发指标预测模型[J].深圳大学学报理工版,2015,32(5):473.[doi:10.3724/SP.J.1249.2015.05473]
Wang Chuanfei,Wu Guanghuan,Wei Tao,et al.Predictive models of dual horizontal well SAGD for thin formation and super heavy oil reservoirs[J].Journal of Shenzhen University Science and Engineering,2015,32(6):473.[doi:10.3724/SP.J.1249.2015.05473]
[4]苏玉亮,姜妙伦,孟凡坤,等.基于分流理论的低渗透油藏CO2泡沫驱渗流模拟[J].深圳大学学报理工版,2018,35(2):187.[doi:10.3724/SP.J.1249.2018.02187]
SU Yuliang,JIANG Miaolun,MENG Fankun,et al.Flow modelling of CO2 foam flooding in low permeability reservoirs based on fractional flow function[J].Journal of Shenzhen University Science and Engineering,2018,35(6):187.[doi:10.3724/SP.J.1249.2018.02187]
[5]秦辉东,杨加,李笑难,等.基于多特征的DNS异常检测技术研究[J].深圳大学学报理工版,2020,37(增刊1):36.[doi:10.3724/SP.J.1249.2020.99036]
QIN Huidong,YANG Jia,LI Xiaonan,et al.Research on DNS anomaly detection technology based on multiple features[J].Journal of Shenzhen University Science and Engineering,2020,37(6):36.[doi:10.3724/SP.J.1249.2020.99036]