参考文献/References:
[1] DIETZ H P, SIMPSON J M. Levator trauma is associated with pelvic organ prolapse[J]. Bjog: An International Journal of Obstetrics & Gynaecology, 2008, 115(8): 979-984.
[2] DELANCEY J O, MORGAN D M, FENNER D E, et al. Comparison of levator ani muscle defects and function in women with and without pelvic organ prolapse[J]. Obstetrics & Gynecology, 2007, 109(2 Pt 1): 295-302.
[3] SINGH K, JAKAB M, REID W M N, et al. Three-dimensional magnetic resonance imaging assessment of levator ani morphologic features in different grades of prolapse[J]. American Journal of Obstetrics & Gynecology, 2003, 188(4): 910-915.
[4] DIETZ H P, SHEK C, DE L J, et al. Ballooning of the levator hiatus[J]. Ultrasound in Obstetrics & Gynecology the Official Journal of the International Society of Ultrasound in Obstetrics & Gynecology, 2008, 31(6): 676.
[5] YING Tao, LI Qiu, XU Lian, et al. Three-dimensional ultrasound appearance of pelvic floor in nulliparous women and pelvic organ prolapse women[J]. International Journal of Medical Sciences, 2012, 9(10): 894-900.
[6] SINDHWANI N, BARBOSA D, ALESSANDRINI M, et al. Semi-automatic outlining of levator hiatus[J]. Ultrasound in Obstetrics & Gynecology, 2016, 48(1): 98.
[7] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// International Conference on Neural Information Processing Systems. North Miami Beach, USA: Curran Associates Inc, 2012: 1097-1105.
[8] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(4): 640-651.
[9] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for scene segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, PP(99):1.
[10] CHEN Hao, ZHENG Yefeng, PARK J H, et al. Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images[C]// Intemational Conference on Medical Jmage Computing and Computer-assisted Jntervention. Athens:[s.n.] 2016: 487-495.
[11] TU Zhuowen. Auto-context and its application to high-level vision tasks[C]// IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]: IEEE, 2008: 1-8.
[12] XU Bing, WANG Naiyan, CHEN Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL]. (2015-05-05). https://arxiv.org/abs/1505.00853.
[13] ZHU Jun, CHEN Xianjie, YUILLE A L. DeePM: a deep part-based model for object detection and semantic part localization[EB/OL]. (2015-11-23).[2016-01-26]. https://arxiv.org/abs/1511.07131
[14] GAO Yaozong, WANG Li, SHAO Yeqin, et al. Learning distance transform for boundary detection and deformable in CT prostate images[M]// Machine Learning in Medical Imaging. Heidelber, Germany: Springer International Publishing, 2014, 8679: 93-100.
[15] QIAN Chunjun, WANG Li, YOUSUF A, et al. In vivo MRI based prostate cancer identification with random forests and auto-context model[C]// International Workshop on Machine Learning in Medical Imaging. Heidelber, Germany: Springer International Publishing, 2014: 314-322.
[16] LIU Ziwei, LI Xiaoxiao, LUO Ping, et al. Semantic image segmentation via deep parsing network[C]// IEEE International Conference on Computer Vision. New York, USA: Computer Society, 2015: 1377-1385.
[17] LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann Publishers Inc, 2001: 282-289.
[18] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[19] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[20] CHANDRA S, KOKKINOS I. Fast, exact and multi-scale inference for semantic image segmentation with deep Gaussian CRFs[C]// European Conference on Computer Vision. Heidelber, Germany: Springer International Publishing, 2016: 402-418.
[21] DONAHUE J, JIA Yangqing, VINYALS O, et al. DeCAF: a deep convolutional activation feature for generic visual recognition[C]// Proceedings of the 31st International Conference on Machine Learning. Beijing: JMLR.org, 2014: 32 (1) 1-647
[22] RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: an astounding baseline for recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, USA: IEEE, 2014: 512-519.
[23] YOSINSKI J,CLUNE J,BENGIO Y,et al.How transferable are features in deep neural networks?[EB/OL].(2014-11-06). https://arxiv.org/abs/1411.1792
[24] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[J]. Computer Science,2014, 8693: 740-755.
[25] HUANG Qian, DOM B. Quantitative methods of evaluating image segmentation[C]// Proceedings of the International Conference on Image Processing. Washington DC, USA: IEEE Computer Society, 1995: 3: 3053.
[26] TAHA A A, HANBURY A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool[J]. BMC Medical Imaging, 2015, 15(1): 29.
[27] CHANG H H, ZHUANG A H, VALENTINO D J, et al. Performance measure characterization for evaluating neuroimage segmentation algorithms[J]. Neuroimage, 2009, 47(1): 122.
[28] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for scene segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
相似文献/References:
[1]潘晓畅,冯乃章,陈思平.二维Savitzky-Golay数字差分器剪切波弹性成像方法[J].深圳大学学报理工版,2018,35(1):22.[doi:10.3724/SP.J.1249.2018.01022]
PAN Xiaochang,FENG Naizhang,et al.A shear wave elastography method based on 2D Savitzky-Golay digital differentiator[J].Journal of Shenzhen University Science and Engineering,2018,35(3):22.[doi:10.3724/SP.J.1249.2018.01022]
[2]刘刚,钱建庭,李先明,等.X射线光声成像的信号检测与仿真[J].深圳大学学报理工版,2018,35(3):324.[doi:10.3724/SP.J.1249.2018.03324]
LIU Gang,CHIN C T,LI Xianming,et al.Simulation and experimental detection of X-ray photo-acoustic[J].Journal of Shenzhen University Science and Engineering,2018,35(3):324.[doi:10.3724/SP.J.1249.2018.03324]
[3]南嘉格列,李锐,王海霞,等.基于深度学习的肝包虫病超声图像分型研究[J].深圳大学学报理工版,2019,36(6):702.[doi:10.3724/SP.J.1249.2019.06702]
NANJIA Gelie,LI Rui,WANG Haixia,et al.Ultrasound image classification for hepatic echinococcosis using deep learning[J].Journal of Shenzhen University Science and Engineering,2019,36(3):702.[doi:10.3724/SP.J.1249.2019.06702]
[4]蒋超,林静,黄鹏.新型近红外花菁类光声探针用于肼检测[J].深圳大学学报理工版,2020,37(1):33.[doi:10.3724/SP.J.1249.2020.01033]
JIANG Chao,LIN Jing,and HUANG Peng.Novel near-infrared cyanine-based photoacoustic probe for hydrazine detection[J].Journal of Shenzhen University Science and Engineering,2020,37(3):33.[doi:10.3724/SP.J.1249.2020.01033]