参考文献/References:
[1] 杜吉祥.植物物种机器识别技术的研究[D].合肥:中国科学技术大学,2005.
DU Jixiang. Identification of plant species with machine learning method[D]. Hefei: University of Science and Technology of China, 2005.(in Chinese)
[2] DAVRANCHE A, LEFEBVRE G, POULIN B. Wetland monitoring using classification trees and SPOT-5 seasonal time series[J]. Remote Sensing of Environment, 2010, 114(3): 552-562.
[3] DRONOVA I, WANG Lin, GONG Peng. Object-based analysis and change detection of the major wetland cover types during the low water period at Poyang Lake, PRC[C]// AGU Fall Meeting. Washington D C: American Geophysical Union, 2010: 4-13.
[4] MACALISTER C, MAHAXAY M. Mapping wetlands in the Lower Mekong Basin for wetland resource and conservation management using Landsat ETM images and field survey data[J]. Journal of Environmental Management, 2009, 90(7): 2130.
[5] 姚云军,秦其明,张自力,等.高光谱技术在农业遥感中的应用研究进展[J].农业工程学报,2008,24(7):301-306.
YAO Yunjun, QIN Qiming, ZHANG Zili, et al. Research progress of hyperspectral technology applied in agricultural remote sensing[J]. Transactions of the CSAE, 2008, 24(7): 301-306.(in Chinese)
[6] 褚西鹏,葛宏立,陈柯萍.基于小波包变换的叶片高光谱数据的树种分类[J].光谱实验室,2012,29(5):2794-2798.
CHU Xipeng, GE Hongli, CHEN Keping. Tree species classification basing on leaf-level hyperspectral data from wavelet packets transform[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(5): 2794-2798.(in Chinese)
[7] 林川,宫兆宁,赵文吉,等.基于光谱特征变量的湿地典型植物生态类型识别方法:以北京野鸭湖湿地为例[J].生态学报,2013,33(4):1172-1185.
LIN Chuan, GONG Zhaoning, ZHAO Wenji, et al. Identifying typical plant ecological types based on spectral characteristic variables: a case study in Wild Duck Lake wetland, Beijing[J]. Acta Ecologica Sinica, 2013, 33(4): 1172-1185.(in Chinese)
[8] 任静,刘刚,赵兴祥,等.FTIR结合小波变换分析鉴别8种根茎类作物[J].中国农学通报,2015,31(3):1522-1526.
REN Jing, LIU Gang, ZHAO Xingxiang, et al. Study of rhizome crops by Fourier transform infrared spectroscopy combined with wavelet analysis[J]. Chinese Agricultural Science Bulletin, 2015, 31(3): 1522-1526.(in Chinese)
[9] 刘雪华,孙岩,吴燕.光谱信息降维及判别模型建立用于识别湿地植物物种[J].光谱学与光谱分析,2012,32(2):459-464.
LIU Xuehua, SUN Yan, WU Yan. Reduction of hyperspectral dimensions and construction of discriminating models for identifying wetland plant species[J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 459-464.(in Chinese)
[10] 臧卓,林辉,孙华,等.南方主要针叶树种高光谱数据降维分类研究[J].中南林业科技大学学报,2010,30(11):20-25.
ZANG Zhuo, LIN Hui, SUN Hua, et al. Study on hyper-spectral dimension reduction and classification for main southern coniferous species[J]. Journal of Central South University of Forestry & Technology, 2010, 30(11): 20-25.(in Chinese)
[11] 孙俊,金夏明,毛罕平,等.基于adaboost及高光谱的生菜叶片氮素水平鉴别研究[J].光谱学与光谱分析,2013,33(12):3372-3376.
SUN Jun, JIN Xiaming, MAO Hanping, et al. Identification of lettuce leaf nitrogen level based on adaboost and hyperspectrum[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3372-3376.(in Chinese)
[12] PU Ruiliang. Broadleaf species recognition with in situ hyperspectral data[J]. International Journal of Remote Sensing, 2009, 30(11): 2759-2779.
[13] 石晶晶,刘占宇,张莉丽,等.基于支持向量机(SVM)的稻纵卷叶螟危害水稻高光谱遥感识别[J].中国水稻科学,2009,23(3):331-334.
SHI Jingjing, LIU Zhanyu, ZHANG Lili, et al. Hyperspectral recognition of rice damaged by rice leaf roller based on support vector machine[J]. Chinese Journal of Rice Science, 2009, 23(3): 331-334.(in Chinese)
[14] 程术希,孔汶汶,张初,等.高光谱与机器学习相结合的大白菜种子品种鉴别研究[J].光谱学与光谱分析,2014,34(9):2519-2522.
CHENG Shuxi, KONG Wenwen, ZHANG Chu, et al. Variety recognition of Chinese cabbage seeds by hyperspectral imaging combined with machine learning[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2519-2522.(in Chinese)
[15] 史冰全,张晓丽,白雪琪,等.基于“三边”参数的油松林叶绿素估算模型[J].东北林业大学学报,2015,43(5):80-83.
SHI Bingquan, ZHANG Xiaoli, BAI Xueqi, et al. Chlorophyll estimation model of pinus tabulaeformis based on“Sanbian” parameters[J]. Journal of Northeast Forestry University, 2015, 43(5):80-83.(in Chinese)
[16] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2013.
ZHAO Yingshi. Principles and methods of analysis of remote sensing applications[M]. Beijing: Science Press, 2013.(in Chinese)
[17] 孙永华, 宫辉力. 基于高光谱的湿地植被定量遥感研究[M]. 北京:中国环境出版社, 2015.
SUN Yonghua, GONG Huili. Quantitative research on wetland plants based on hyperspectral remote sensing[M]. Beijing: China Environmental Science Press, 2015.(in Chinese)
[18] COVER T M. Rates of convergence for nearest neighbor procedures[C]// Hawaii International Conference on System Sciences. Hawaii,USA:[s. n], 1968: 413-417.
[19] CORTES C, VAPNIK V. Support-vector networks[M]. Dordrecht, Holland: Kluwer Academic Publishers, 1995.
[20] BREIMAN L. Random forest[J]. Machine Learning, 2001, 45(1): 5-32.
[21] 杨珺雯,张锦水,朱秀芳,等.随机森林在高光谱遥感数据中降维与分类的应用[J].北京师范大学学报自然科学版,2015,51(s1):82-88.
YANG Junwen, ZHANG Jinshui, ZHU Xiufang, et al. Random forest applied for dimension reduction and classification in hyperspectral data[J]. Journal of Beijing Normal University Natural Science, 2015, 51(s1): 82-88.(in Chinese)
[22] 齐浩,王振锡,岳俊,等.基于叶片光谱特征的南疆盆地主栽果树树种遥感识别[J].浙江农业学报,2015,27(12):2141-2146.
QI Hao, WANG Zhenxi, YUE Jun, et al. Remote sensing identification of main fruit tree species based on leaf spectral feature in southern Xinjiang basin[J]. Acta Agriculturae Zhejiangensis, 2015, 27(12): 2141-2146.(in Chinese)