[1]董必钦,郭邦文,刘昱清,等.水泥净浆水分传输过程可视化表征与定量分析[J].深圳大学学报理工版,2018,35(3):285-291.[doi:10.3724/SP.J.1249.2018.03285]
 DONG Biqin,GUO Bangwen,LIU Yuqing,et al.Visualization and quantitative analysis of water transport evolution in cementitious materials[J].Journal of Shenzhen University Science and Engineering,2018,35(3):285-291.[doi:10.3724/SP.J.1249.2018.03285]
点击复制

水泥净浆水分传输过程可视化表征与定量分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第35卷
期数:
2018年第3期
页码:
285-291
栏目:
材料科学
出版日期:
2018-05-15

文章信息/Info

Title:
Visualization and quantitative analysis of water transport evolution in cementitious materials
文章编号:
201803007
作者:
董必钦郭邦文刘昱清姚婉琼洪舒贤邢锋
深圳大学土木工程学院,广东省滨海土木工程耐久性重点实验室,广东深圳518060
Author(s):
DONG Biqin GUO Bangwen LIU Yuqing YAO Wanqiong HONG Shuxian and XING Feng
College of Civil Engineering, Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
建筑材料水泥基材料水分传输X射线断层扫描吸水深度Lucas-Washburn 方程
Keywords:
building materials cementitious materials water transport X-ray computed tomography microscope absorption depth Lucas-Washburn equation
分类号:
TU 501
DOI:
10.3724/SP.J.1249.2018.03285
文献标志码:
A
摘要:
有害离子通过水为媒介在水泥基材料内部传输,引起钢筋混凝土的劣化发展,缩短了混凝土结构的服役年限. 为研究水泥基材料因水分传输引起的劣化机理,基于X射线断层扫描技术,采用碘化钠溶液作为图像增强剂,对水分在水泥净浆内部的传输过程进行原位和无损可视化追踪,分析水在水泥基体的吸水渗透深度变化. 研究表明,当采用质量分数为10%的碘化钠溶液时,X射线断层扫描技术可清晰表征水分在净浆中的二维和三维传输过程;通过X射线断层扫描技术测定的吸水深度与时间平方根呈线性关系,符合Locas-Washburn方程.
Abstract:
Harmful ions transport inside the concrete by the medium of water, causing the deterioration of concrete and the steel-bar corrosion development and shortening the service life of concrete. In order to study the degradation mechanism of cement-based material due to water transportation, this study in-situ traces the water transport process in cement paste non-destructively and quantitatively analyzes the relationship between water uptake depth and absorption time by means of X-ray computed tomography microscope (X-ray μCT) combined with NaI enhancing. The results show that the 2D and 3D evolution of water transport in cement paste could be clearly characterized by X-ray μCT method with mass fraction of 10% NaI solution. What’s more, the absorption depth measured by X-ray μCT is linear with the square root of time, which is consistent with Locas-Washburn equation.

参考文献/References:

[1] 殷慧, 董必钦, 丁铸, 等. 混凝土的渗水、吸水特性研究[J]. 低温建筑技术,2009, 31(2):4-6.
YIN Hui, DONG Biqin, DING Zhu, et al. Study of the water absorptivity and permeability for concrete[J]. Low Temperature Architecture Technology, 2009, 31(2):4-6.(in Chinese)
[2] BAO Jiuwen, WANG Licheng. Effect of short-term sustained uniaxial loadings on water absorption of concrete[J]. Journal of Materials in Civil Engineering, 2017, 29(3):04016234.
[3] 赵铁军. 混凝土渗透性[M]. 北京:科学出版社, 2006.
ZHAO Tiejun. Concrete permeability[M]. Beijing:Science Press, 2006.(in Chinese)
[4] MARTYS N S, FERRARIS C E. Capillary transport in mortars and concrete[J]. Cement and Concrete Research, 1997, 27(5):747-760.
[5] ZHANG Peng, LIU Zhaolin, HAN Songbai, et al. Visualization of rapid penetration of water into cracked cement mortar using neutron radiography[J]. Materials Letters, 2017, 195:1-4.
[6] ANDRS F C, VALCUENDE M, VIDAL B. Using microwave near-field reflection measurements as a non-destructive test to determine water penetration depth of concrete[J]. NDT & Engineering International, 2015, 75:26-32.
[7] 林俊人, 林种玉, 杜荣归, 等. 多重全内反射红外光谱原位研究混凝土渗透性[J]. 光谱学与光谱分析, 2011, 31(5):1236-1240.
LIN Junren, LIN Zhongyu, DU Ronggui, et al. In situ measurement of the permeability of concrete by FTIR-MIR[J]. Spectroscopy and Spectral Analysis, 2011, 31(5):1236-1240.(in Chinese)
[8] CNUDDE V, BOONE M N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications[J]. Earth-Science Reviews, 2013, 123:1-17.
[9] LIU Tao, ZHANG Xiaoning, LI Zhi, et al. Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (CT) and fractal theory[J]. Construction and Building Materials, 2014, 68:587-598.
[10] LEITE M B, MONTEIRO P J. Microstructural analysis of recycled concrete using X-ray microtomography[J]. Cement and Concrete Research, 2016, 81:38-48.
[11] MARCOS L, VEERLE C, TIM D K, et al. X-ray microtomography (μ-CT) to evaluate microstructure of mortars containing low density additions[J]. Cement and Concrete Composites, 2012, 34:993-1000.
[12] DONG Biqin, FANG Guohao, LIU Yuqing, et al. Monitoring reinforcement corrosion and corrosion-induced cracking by X-ray microcomputed tomography method[J]. Cement and Concrete Research, 2017, 100: 311-321.
[13] 刘昱清, 丁蔚健, 秦韶丰, 等. 基于XCT 技术的混凝土钢筋智能缓蚀系统性能表征[J]. 建筑材料学报,2018, 21(1):33-40.
LIU Yuqing, DING Weijian, QIN Shaofeng, et al. Inhibition performance evaluation of smart concrete system by X-ray μCT[J]. Journal of Building Materials, 2018, 21(1):33-40.(in Chinese)
[14] MEHDI K M, HU Qinang, TYLER L M. Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials[J]. Construction and Building Materials, 2017, 136:88-98.
[15] ASTM C 1585-04. Standard test method for measurement of rate of absorption of water by hydraulic cement concretes[S]. ASTM International, West Conshohocken, PA. 2002
[16] BOONE M A, KOCK T D, BULTREYS T, et al. 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging[J]. Materials Characterization, 2014, 97:150-160.
[17] LIU Yang, ZHANG Yunsheng, LIU Zhiyong, et al. In-situ tracking of water transport in cement paste using X-ray computed tomography combined with CsCl enhancing[J]. Materials Letters, 2015, 160:381-383.
[18] 吕静, 刘玉章, 高建, 等. 应用CT研究水平井置胶成坝深部液流转向机理[J].石油勘探与开发, 2011, 38(6):733-737.
L Jing, LIU Yuzhang, GAO Jian, et al. Mechanism research of in-depth fluid diversion by “gel dam” place with horizontal well using X-ray CT[J]. Petroleum Exploration and Development, 2011, 38(6):733-737.(in Chinese)
[19] HALL C. Water sorptivity of mortar and concrete[J]. Magazine of Concrete Research, 1989, 41:51-61.
[20] HANZIC L, ILIC R. Relationship between liquid sorptivity and capillarity in concrete[J]. Cement and Concrete Research, 2003, 33(9):1385-1388.

相似文献/References:

[1]张亚芳,陈江平.不同掺量玻璃纤维增强水泥细观数值研究[J].深圳大学学报理工版,2010,27(1):103.
 ZHANG Ya-fang and CHEN Jiang-ping.Numerical study on glass fiber reinforced cement with different incorporation rates[J].Journal of Shenzhen University Science and Engineering,2010,27(3):103.
[2]刘贤淼,江泽慧,费本华.玻璃纤维布增强造纸脱墨污泥纤维板性能研究[J].深圳大学学报理工版,2012,29(No.4(283-376)):371.[doi:10.3724/SP.J.1249.2012.04371]
 LIU Xian-miao,JIANG Ze-hui,and FEI Ben-hua.Paper deinking sludge fiberboard reinforced by fiberglass fabric[J].Journal of Shenzhen University Science and Engineering,2012,29(3):371.[doi:10.3724/SP.J.1249.2012.04371]
[3]付晔,李庆华,徐世烺.高温后纳米改性水泥基材料的残余抗折强度[J].深圳大学学报理工版,2014,31(2):187.[doi:10.3724/SP.J.1249.2014.02187]
 Fu Ye,Li Qinghua,and Xu Shilang.The effects of high temperature on flexural strengths of high performance nano-modified cementitious composites[J].Journal of Shenzhen University Science and Engineering,2014,31(3):187.[doi:10.3724/SP.J.1249.2014.02187]
[4]彭家惠,刘先锋,张建新,等.磷酸盐对α半水脱硫石膏凝结硬化的作用机理[J].深圳大学学报理工版,2014,31(4):388.[doi:10.3724/SP.J.1249.2014.04388]
 Peng Jiahui,Liu Xianfeng,Zhang Jianxin,et al.Mechanisms of phosphate on the hydration and hardening of α-hemihydrate desulfurization gypsum[J].Journal of Shenzhen University Science and Engineering,2014,31(3):388.[doi:10.3724/SP.J.1249.2014.04388]
[5]倪卓,邢锋,石开勇,等.微胶囊对水泥自修复复合材料微观结构的影响[J].深圳大学学报理工版,2015,32(1):68.[doi:10.3724/SP.J.1249.2015.01068]
 Ni Zhuo,Xing Feng,Shi Kaiyong,et al.Influence of microcapsule on microcosmic structure of self-healing cementitious composite[J].Journal of Shenzhen University Science and Engineering,2015,32(3):68.[doi:10.3724/SP.J.1249.2015.01068]
[6]童芸芸,叶良,马超.钢筋腐蚀产物实时检测的再钝化机理分析[J].深圳大学学报理工版,2017,34(1):75.[doi:10.3724/SP.J.1249.2017.01075]
 Tong Yunyun,Ye Liang,and Ma Chao.Real time analysis on repassivation mechanism of steel rebar corrosion products[J].Journal of Shenzhen University Science and Engineering,2017,34(3):75.[doi:10.3724/SP.J.1249.2017.01075]
[7]刘昱清,董鹏,滕晓娟,等.基于X-ray μCT技术的钢筋锈胀特征分析[J].深圳大学学报理工版,2017,34(6):618.[doi:10.3724/SP.J.1249.2017.06618]
 Liu Yuqing,Dong Peng,Teng Xiaojuan,et al.Characterization of corrosion expansion feature of steel bar by means of X-ray μCT[J].Journal of Shenzhen University Science and Engineering,2017,34(3):618.[doi:10.3724/SP.J.1249.2017.06618]
[8]丁铸,孙晨,戴梦希.磷酸盐水泥砂浆作为锚固胶的性能研究[J].深圳大学学报理工版,2018,35(2):132.[doi:10.3724/SP.J.1249.2018.02132]
 DING Zhu,SUN Chen,and DAI Mengxi.Properties of phosphate cement mortar as an anchorage adhesive[J].Journal of Shenzhen University Science and Engineering,2018,35(3):132.[doi:10.3724/SP.J.1249.2018.02132]
[9]刘斌清,仵江涛,陈华鑫,等.多聚磷酸改性沥青的路用性能及机理分析[J].深圳大学学报理工版,2018,35(3):292.[doi:10.3724/SP.J.1249.2018.03292]
 LIU Binqing,WU Jiangtao,et al.Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J].Journal of Shenzhen University Science and Engineering,2018,35(3):292.[doi:10.3724/SP.J.1249.2018.03292]
[10]陈歆,郑秀华,韩凯.玄武岩纤维掺杂混凝土材料特性研究[J].深圳大学学报理工版,2019,36(1):61.[doi:10.3724/SP.J.1249.2019.01061]
 CHEN Xin,ZHENG Xiuhua,and HAN Kai.Characterization of basalt fiber doped concrete materials[J].Journal of Shenzhen University Science and Engineering,2019,36(3):61.[doi:10.3724/SP.J.1249.2019.01061]

备注/Memo

备注/Memo:
Received:2017-10-31;Accepted:2018-03-01
Foundation:National Natural Science Foundation of China (51538007,51478270,51378239)
Corresponding author:Professor DONG Biqin.E-mail: incise@szu.edu.cn
Citation:DONG Biqin, GUO Bangwen, LIU Yuqing, et al. Visualization and quantitative analysis of water transport evolution in cementitious materials [J]. Journal of Shenzhen University Science and Engineering, 2018, 35(3): 285-291.(in Chinese)
基金项目:国家自然科学基金资助项目(51538007,51478270,51378239)
作者简介:董必钦(1975—),男,深圳大学教授.研究方向:水泥基材料.E-mail:incise@email.szu.edu.cn
引文:董必钦,郭邦文,刘昱清,等.水泥净浆水分传输过程可视化表征与定量分析[J]. 深圳大学学报理工版,2018,35(3):285-291.
更新日期/Last Update: 2018-04-28