[1]贵大勇,刘灿群,宗阳阳,等.液晶功能化碳纳米管有机硅复合材料的制备与性能[J].深圳大学学报理工版,2018,35(3):278-284.[doi:10.3724/SP.J.1249.2018.03278]
 GUI Dayong,LIU Canqun,ZONG Yangyang,et al.Preparation and characterization of liquid crystal functionalized MWCNTs-organic silicone nanocomposites[J].Journal of Shenzhen University Science and Engineering,2018,35(3):278-284.[doi:10.3724/SP.J.1249.2018.03278]
点击复制

液晶功能化碳纳米管有机硅复合材料的制备与性能()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第35卷
期数:
2018年第3期
页码:
278-284
栏目:
材料科学
出版日期:
2018-05-15

文章信息/Info

Title:
Preparation and characterization of liquid crystal functionalized MWCNTs-organic silicone nanocomposites
文章编号:
201803006
作者:
贵大勇刘灿群宗阳阳郑进宝喻思颜晓梅王明良
深圳大学化学与环境工程学院,广东深圳518060
Author(s):
GUI Dayong LIU Canqun ZONG Yangyang ZHENG Jinbao YU Si YAN Xiaomei and WANG Mingliang
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
聚合物基复合材料导热材料碳纳米管有机硅液晶力学性能导热性能
Keywords:
polymer composites thermal conductive materials carbon nanotube silicone liquid crystal mechanical properties thermal conductivity
分类号:
TB 332;TB 324
DOI:
10.3724/SP.J.1249.2018.03278
文献标志码:
A
摘要:
为提高有机硅复合材料的导热性能和力学性能,防止碳纳米管团聚,改善其与聚合物的混容性,通过一种向列型液晶N-(4-甲氧基亚苄基)对丁基苯胺(N-(4′-methoxybenzylidene)-4-butylaniline, MBBA)分子功能化改性多壁碳纳米管(multi-walled carbon nanotubes, MWCNTs), 制备了MBBA-MWCNTs有机硅纳米复合材料.测试结果表明,MBBA液晶与碳纳米管之间通过非共价键(π-π堆积)相互结合,不仅提高了碳纳米管在有机硅复合材料中的分散性,而且保证了MBBA功能化碳纳米管与有机硅良好的混容性,从而更好地发挥了碳纳米管优异的热学性能和力学性能.当MWCNTs质量分数为1.0%时,MBBA-MWCNTs有机硅复合材料的拉伸强度达到6.78 MPa,比相同质量分数的MWCNTs有机硅复合材料提高了36%,比纯有机硅材料的提高了500%.当MWCNTs质量分数为14.0%时,MBBA-MWCNTs有机硅复合材料的导热系数达到0.561 5 W/(m·K),比MWCNTs有机硅材料的导热系数高54%,约是纯的有机硅材料导热系数的4倍.
Abstract:
This study aims to improve the thermal conductivity and mechanical properties of organic silicone composites, prevent the agglomeration of carbon nanotubes, and improve their compatibility with polymers. The MBBA-MWCNTs-silicone nanocomposites are prepared via a nematic liquid crystal N-(4′-methoxybenzylidene)-4-butylaniline (MBBA) molecularly modified multi-walled carbon nanotubes (MWCNTs). The results show that MBBA interacts with MWCNTs via a non-covalent π-π interaction, which not only improves the dispersion of MWCNTs in silicone resin but also guarantees the good compatibility between MWCNTs and the silicone resin matrix. While the mass fraction of MWCNTs is 1.0%, the tensile strength of MBBA-MWCNTs-organic silicone nanocomposites are increased to be 6.78 MPa, which are enhanced by 500% and 36%, respectively, compared to those of organic silicone and MWCNTs-organic silicone nanocomposites. The thermal conductivity of the silicone resin filled with the MBBA-MWCNTs reaches 0.561 5 W/(m·K) at the mass fraction of 14.0%, which is as about 4 times as that of neat silicone material and 54% over that of MWCNTs-organic silicone nanocomposite with the same filler mass fraction.

参考文献/References:

[1] ALEKSEEVA E I, NANUSH’YAN S R, RUSKOL I Y, et al. Silicone compounds and sealants and their application in various branches of industry[J]. Polymer Science, 2010, 3(4):244-248.
[2] ZWEBEN C. Advances in composite materials for thermal management in electronic packaging[J]. JOM-Journal of the Minerals Metals and Materials Society, 1998, 50(6):47-51.
[3] SHANG Yu, ZHANG Dong. Research status of graphene-based thermal interface material[J]. Journal of Functional Materials, 2013, 44(22) :3219-3224.
[4] HU Yongjun, ZHANG Haiyan, CHENG Xiaoling, et al. Electroless plating of silver on cenosphere particles and the investigation of its corrosion behavior in composite silicon rubber[J]. Applied Surface Science, 2011, 257(7) :2813-2817.
[5] MCNAMARA A J, JOSHI Y, ZHANG Z M. Characterization of nanostructured thermal interface materials-a review[J]. International Journal of Thermal Science, 2012, 62(SI):2-11.
[6] GUI Dayong, XIONG Weijian, TAN Guiming, et al. Improved thermal and mechanical properties of silicone resin composites by liquid crystal functionalized graphene nanoplatelets[J]. Journal of Materials Science: Materials in Electronics, 2015, 27(2) :1-8.
[7] LIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
[8] KAUSHIK B K, GOEL S, RAUTHAN G. Future VLSI interconnects: optical fiber or carbon nanotube - a review[J]. Microelectronics International, 2007, 24(2):53-63.
[9] KIM P, SHI L, MAJUMDAR A,et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21):215502.
[10] HAN Zhidong, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review[J]. Progress in Polymer Science, 2011, 36(7):914-944.
[11] CAI Lintao, BAHR J L, YAO Yuxing, et al. Ozonation of single-walled carbon nanotubes and their assemblies on rigid self-assembled monolayers[J]. Chemistry of Materials, 2002, 14(10):4235-4241.
[12] WEIDENFELLER B, HFER M, SCHILLING F R. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(4):423-429.
[13] YANG S Y, MA C C M, TENG C C, et al. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites[J]. Carbon, 2010, 48(3):592-603.
[14] TENG C C, MA C C M, CHIOU K C, et al. Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride[J]. Composites Part B-Engineering, 2012, 43(2):265-271.
[15] HUANG Jiang, GAO Min, PAN Taisong, et al. Effective thermal conductivity of epoxy matrix filled with poly (ethyleneimine) functionalized carbon nanotubes[J]. Composites Science and Technology, 2014, 95: 16-20.
[16] ZHANG Wenbin, XU Xianling, YANG Jinghui, et al. High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone[J]. Composites Science and Technology, 2015, 106:1-8.
[17] XIONG Weijian, GAO Xue, GUI Dayong, et al. Preparation of liquid crystal 4′-allyloxy-biphenyl-4-ol functionalized MWCNTs and their application on improving mechanical and thermal properties of silicon resin[J]. Polymer Engineering and Science, 2016, 56(10):1118-1124.
[18] VIMAL T, PANDEY S, GUPTA S K, et al. Enhanced negative dielectric anisotropy and high electrical conductivity of the SWCNT doped nematic liquid crystalline material[J]. Journal of Molecular Liquids, 2015, 204:21-26.
[19] TIE Weiwei, BHATTACHARYYA S S, ZHANG Yange, et al.Field-induced stretching and dynamic reorientation of functionalized multiwalled carbon nanotube aggregates in nematic liquid crystals[J]. Carbon, 2016, 96:548-556.
[20] JBER N R, RASHAD A A, SHIHAB M S. Effects of carbon nanotubes on the physical properties of a nematic liquid crystal N-(4′-methoxybenzylidene)-4-butylaniline[J]. Journal of Molecular Structure, 2013, 1043:28-36.

备注/Memo

备注/Memo:
Received:2017-07-14;Accepted:2017-12-10
Foundation:Natural Science Foundation of Guangdong Province (2017A030313322)
Corresponding author:Professor GUI Dayong.E-mail: dygui@szu.edu.cn
Citation:GUI Dayong, LIU Canqun, ZONG Yangyang, et al. Preparation and characterization of liquid crystal functionalized MWCNTs-organic silicone nanocomposites[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(3): 278-284.(in Chinese)
基金项目:广东省自然科学基金资助项目(2017A030313322)
作者简介:贵大勇(1963—),深圳大学教授. 研究方向:高分子材料.E-mail:dygui@szu.edu.cn
引文:贵大勇,刘灿群,宗阳阳,等.液晶功能化碳纳米管有机硅复合材料的制备与性能[J]. 深圳大学学报理工版,2018,35(3):278-284.
更新日期/Last Update: 2018-04-28