[1]李春,胡晓影,何天应,等.二维原子晶体半导体转移技术研究进展[J].深圳大学学报理工版,2018,35(3):257-266.[doi:10.3724/SP.J.1249.2018.03257]
 LI Chun,HU Xiaoying,HE Tianying,et al.Recent progress on transfer techniques oftwo-dimensional atomically thin semiconductor[J].Journal of Shenzhen University Science and Engineering,2018,35(3):257-266.[doi:10.3724/SP.J.1249.2018.03257]
点击复制

二维原子晶体半导体转移技术研究进展()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第35卷
期数:
2018年第3期
页码:
257-266
栏目:
材料科学
出版日期:
2018-05-15

文章信息/Info

Title:
Recent progress on transfer techniques oftwo-dimensional atomically thin semiconductor
文章编号:
201803003
作者:
李春胡晓影何天应孙培华兰长勇
电子科技大学光电科学与工程学院, 四川成都 610054
Author(s):
LI Chun HU Xiaoying HE Tianying SUN Peihua and LAN Changyong
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan Province, P.R.China
关键词:
纳米材料二维材料过渡金属硫化物干法转移湿法转移范德瓦尔斯异质结
Keywords:
nanomaterial two-dimensional material transition metal dichalcogenides dry transfer wet transfer Van del Waals heterostructure
分类号:
O 613.5;O 614.61
DOI:
10.3724/SP.J.1249.2018.03257
文献标志码:
A
摘要:
实现不同基底间高效率、高质量的二维原子晶体转移(即转移技术),是开展二维晶体异质结及柔性器件研究与应用的关键. 近年以二硫化钼为代表的过渡金属硫化物(transition metal dichalcogenides,TMDs)二维半导体已成为继石墨烯之后的二维材料研究热点. 目前,TMDs常用转移技术主要包括湿法转移、干法转移、热释放胶带辅助、表面能辅助、鼓泡转移以及真空热压法等. 这些方法各有利弊:湿法转移成本低、步骤简洁,但依赖聚合物支撑,容易对TMDs造成污染;干法转移借助精密位移技术可实现精准控制,特别适用微晶定位转移,但转移成功率有待提升;热释放胶带巧妙利用金属膜与TMDs二维材料间较强的吸附力,能够在不转移的情况下,直接在原始基底上构造阵列结构,但步骤相对复杂;表面能辅助法利用水在不同界面表面能差异,可实现快速自动剥离,但易引入褶皱;鼓泡转移则是通过电化学或超声方式产生的气泡崩塌使二维材料与基底界面分离,同样材料表面容易产生褶皱和破裂等缺陷;真空热压法在组装高质量、大面积多层异质结方面独具优势. 该述评可为恰当选择转移方法提供指引.
Abstract:
High efficiency and high quality transfer techniques of two-dimensional (2D) materials between different substrates are vital for fabrication of 2D heterojunctions and their flexible devices. Triggered by graphene, 2D transition metal dichalcogenides (TMDs) are becoming a hot topic in 2D material research community. In the past few years, various transfer techniques mainly including wet transfer, dry transfer, thermal release tape assisted, surface energy assisted transfer, bubble transfer, and programmed vacuum stack transfer have been demonstrated. Their comparisons show that the wet transfer is the most popular one, but it relies on the polymer support and is prone to contamination of 2D materials. The dry transfer is carried out under the precise position control by a three-dimensional micromanipulator, therefore, it is suitable for building heterojunctions based on mechanical exfoliated microflake crystals. However, the efficiency is still relatively low. The thermal release tape assisted technique utilizing the strong adhesion force between the metal film and the TMDs can construct arrays directly on original substrate without transfer, however the steps are relatively complex. The surface energy assisted transfer can realize fast and automatically peel off the TMDs from the substrates according to the difference of surface energies, but it is easy to introduce folds. The bubble transfer is carried out by the bubble collapse caused by ultrasonic or electrochemical reaction, then separates the 2D material from the substrate, but the surface of the TMDs is prone to wrinkle and fracture. Recently, programmed vacuum stack shows unique advantages in assembling multi-layer heterojunction with large-scale and high-quality. This review not only provides a scientific reference for on-demand transfer method selection, but also sheds light on the development of new transfer technologies.

参考文献/References:

[1] TIEN D H, PARK J Y, KIM K B, et al. Study of graphene-based 2D-heterostructure device fabricated by all-dry transfer process[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3072-3078.
[2] ZHANG Jincan, LIN Li, SUN Luzhao, et al. Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells[J]. Advanced Materials, 2017, 29(26): 1700639.
[3] 陈牧,颜悦,张晓锋,等.大面积石墨烯薄膜转移技术研究进展[J].航空材料学报,2015, 35(2):1-11.
CHEN Mu, YAN Yue, ZHANG Xiaofeng, et al. Advanced in large-area graphene film transfer techniques[J]. Journal of Aeronautical Materials, 2015, 35(2): 1-11.(in Chinese)
[4] 黄曼,郭云龙,武斌,等.化学气相沉积法合成石墨烯的转移技术研究进展[J].化学通报,2012, 75(11):974.
HUANG Man, GUO Yunlong, WU Bin,et al. Progress in transfer techniques of graphene synthesized by chemical vapor deposition[J]. Chemistry, 2012, 75(11): 974.(in Chinese)
[5] BOSCA A, PEDROS J, MARTINEZ J, et al. Automatic graphene transfer system for improved material quality and efficiency[J]. Scientific Reports, 2016, 6: 21676.
[6] ZHANG Guohui, GUEELL A G, KIRKMAN P M, et al. Versatile polymer-free graphene transfer method and applications[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 8008-8016.
[7] ZHANG Zhikun, DU Jinhong, ZHANG Dingdong, et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes[J]. Nature Communications, 2017, 8: 14560.
[8] CHEN Yi, GONG Xiaolei, GAI Jinggang. Progress and challenges in transfer of large-area graphene films[J]. Advance Science, 2016, 3(8): 1500343.
[9] WANG Xiaotian, KANG K, CHEN Siwei, et al. Location-specific growth and transfer of arrayed MoS2 monolayers with controllable size[J]. 2D Materials, 2017, 4(2): 025093.
[10] ELAS A L, PEREA-LOPEZ N, CASTRO-BELTRAN A A, et al. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers[J]. ACS Nano, 2013, 7(6): 5235-5242.
[11] LIU Kengku, ZHANG Wenjing, LEE Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Letters, 2012, 12(3): 1538-1544.
[12] NGOC H V, QIAN Yongteng, HAN S K, et al. PMMA-etching-free transfer of wafer-scale chemical vapor deposition two-dimensional atomic crystal by a water soluble polyvinyl alcohol polymer method[J]. Scientific Reports, 2016, 6: 33096.
[13] YANG S Y, OH J G, JUNG D Y, et al. Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom[J]. Small, 2015, 11(2): 175-181.
[14] KHAN U, MAY P, O’NEILL A, et al. Polymer reinforcement using liquid-exfoliated boron nitride nanosheets[J]. Nanoscale, 2013, 5(2): 581-587.
[15] LEE Y H, YU Lili, WANG Han, et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces[J]. Nano Letters, 2013, 13(4): 1852-1857.
[16] SALVATORE G A, MUENZENRIEDER N, BARRAUD C A, et al. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate[J]. ACS Nano, 2013, 7(10): 8809-8815.
[17] CALDWELL J D, ANDERSON T J, CULBERTSON J C, et al. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates[J]. ACS Nano, 2010, 4(2): 1108-1114.
[18] UWANNO T, HATTORI Y, TANIGUCHI T, et al. Fully dry PMMA transfer of graphene on h-BN using a heating/cooling system[J]. 2D Materials, 2015, 2(4): 041002.
[19] YANG Rui, ZHENG Xuqian, WANG Zenghui, et al. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing[J]. Journal of Vacuum Science & Technology B, 2014, 32(6): 061203.
[20] MA Xuezhi, LIU Qiushi, XU Da, et al. Capillary-force-assisted clean-stamp transfer of two-dimensional materials[J]. Nano Letters, 2017, 17(11): 6961-6967.
[21] SCHNEIDER G F, CALADO V E, ZANDBERGEN H A, et al. Wedging transfer of nanostructures[J]. Nano Letters, 2010, 10(5): 1912-1916.
[22] LI Hai, WU J, HUANG Xiao, et al. A universal, rapid method for clean transfer of nanostructures onto various substrates[J]. ACS Nano, 2014, 8(7): 6563-6570.
[23] GURARSLAN A, YU Yifei, SU Liqin, et al. Surface-energy-assisted perfect transfer of centimeter-scale mono layer and few-layer MoS2 films onto arbitrary substrates[J]. ACS Nano, 2014, 8(11): 11522-11528.
[24] KOZAWA D, CARVALHO A, VERZHBITSKIY I A, et al. Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures[J]. Nano Letters, 2016, 16(7): 4087-4093.
[25] YU Hua, LIAO Mengzhou, ZHAO Wenjuan, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films[J]. ACS Nano, 2017, 11(12): 12001-12007.
[26] MURATA A, OSHIMA T, ARIMITSU Y, et al. Method of heat-peeling chip cut pieces from heat peel type adhesive sheet, electronic part, and circuit board: U.S.Patent Application 10/485,153[P]. 2002-07-23.
[27] LIN Ziyuan, ZHAO Yuda, ZHOU Changjian, et al. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film[J]. Scientific Reports, 2015, 5: 18596.
[28] RIEDL C, COLETTI C, STARKE U. Structural and electronic properties of epitaxial graphene on SiC (0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation[J]. Journal of Physics Applied Physics, 2010, 43(37): 221-229.
[29] ZHAO Jing, YU Hua, CHEN Wei, et al. Patterned peeling 2D MoS2 off the substrate[J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16546-16550.
[30] ROSA D L, LINDVALL N, COLE M T, et al. Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu[J].Applied Physics Letters, 2013, 102(2): 022101.
[31] YUN S J, CHAE S H, KIM H, et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils[J]. ACS Nano, 2015, 9(5): 5510-5519.
[32] MA Donglin, SHI Jianping, JI Qingqing, et al. A universal etching-free transfer of MoS2 films for applications in photodetectors[J]. Nano Research, 2015, 8(11): 3662-3672.
[33] KANG K, LEE K H, HAN Yimo, et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures[J]. Nature, 2017, 550(7675): 229-233.
[34] BAE S, KIM H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J].Nature Nanotechnology, 2010, 5(8): 574-578.
[35] JUANG Z Y, WU C Y, LU A Y, et al. Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process[J]. Carbon, 2010, 48(11): 3169-3174.
[36] KOBAYASHI T, BANDO M, KIMURA N, et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process[J]. Applied Physics Letters, 2013, 102(2): 023112.
[37] MCMANUS D, VRANIC S, WITHERS F, et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures[J]. Nature Nanotechnology, 2017, 12(4): 343-350.

相似文献/References:

[1]周晓明,辛红,游志军,等.CePO4纳米结构合成[J].深圳大学学报理工版,2010,27(2):211.
 ZHOU Xiao-ming,XIN Hong,YOU Zhi-jun,et al.Synthesis of nano-structured CePO4 films[J].Journal of Shenzhen University Science and Engineering,2010,27(3):211.
[2]李正操,余晓毅,苗伟,等.氧化钇掺杂铁薄膜的制备及热稳定行为[J].深圳大学学报理工版,2010,27(3):273.
 LI Zheng-cao,YU Xiao-yi,MIAO Wei,et al.The preparation and behavior in annealing of the yttria dispersed Ferrum films[J].Journal of Shenzhen University Science and Engineering,2010,27(3):273.
[3]马运柱,李静,刘文胜.钨晶须制备及生长机理研究[J].深圳大学学报理工版,2011,28(No.2(095-188)):183.
 MA Yun-zhu,LI Jing,and LIU Wen-sheng.Preparation and growth mechanism of tungsten whiskers[J].Journal of Shenzhen University Science and Engineering,2011,28(3):183.
[4]曹慧群,张欣鹏,樊先平,等.铜铟镓硒纳米颗粒制备技术的研究进展[J].深圳大学学报理工版,2012,29(No.3(189-282)):247.[doi:10.3724/SP.J.1249.2012.03247]
 CAO Hui-qun,ZHANG Xin-peng,FAN Xian-ping,et al.Research progress on synthesis of CuIn1-xGaxSe2 nanoparticles[J].Journal of Shenzhen University Science and Engineering,2012,29(3):247.[doi:10.3724/SP.J.1249.2012.03247]
[5]汝丽丽,孟月东,陈龙威.氦等离子体前处理对多晶硅薄膜性能的影响[J].深圳大学学报理工版,2013,30(No.4(331-440)):398.[doi:10.3724/SP.J.1249.2013.04398]
 Ru Lili,Meng Yuedong,and Chen Longwei.Influence of Helium plasma pre-treatment on properties of polycrystalline silicon films[J].Journal of Shenzhen University Science and Engineering,2013,30(3):398.[doi:10.3724/SP.J.1249.2013.04398]
[6]徐宏,刘剑洪,蔡弘华,等.纳米氧化铈的制备及其催化性能研究[J].深圳大学学报理工版,2002,19(2):13.
 XU Hong,LIU Jian-hong,CAI Hong-hua and TIAN De-yu.Synthesis of Nanometer-sized Cerium Oxide and Its Effect on Catalyzing Decomposition of Absorbent Powder[J].Journal of Shenzhen University Science and Engineering,2002,19(3):13.
[7]李成印,牛之慧,雷翔宇,等.磷烯的制备、性质及应用研究进展[J].深圳大学学报理工版,2018,35(3):234.[doi:10.3724/SP.J.1249.2018.03234]
 LI Chengyin,NIU Zhihui,LEI Xiangyu,et al.Research progress of the preparation, properties and application of phosphorene[J].Journal of Shenzhen University Science and Engineering,2018,35(3):234.[doi:10.3724/SP.J.1249.2018.03234]
[8]张晗,邹吉菲,罗劭娟,等.基于二维材料气体传感器的研究[J].深圳大学学报理工版,2018,35(3):221.[doi:10.3724/SP.J.1249.2018.03221]
 ZHANG Han,ZOU Jifei,LUO Shaojuan,et al.Research progress of gas sensors based on two-dimensional materials[J].Journal of Shenzhen University Science and Engineering,2018,35(3):221.[doi:10.3724/SP.J.1249.2018.03221]
[9]宋宗鹏,朱海鸥,蒋凌峰,等.飞秒激光诱导单层二硫化钨的光响应研究[J].深圳大学学报理工版,2018,35(6):611.[doi:10.3724/SP.J.1249.2018.06611]
 SONG Zongpeng,ZHU Haiou,JIANG Lingfeng,et al.Femtosecond laser-induced optical response of monolayer WS2[J].Journal of Shenzhen University Science and Engineering,2018,35(3):611.[doi:10.3724/SP.J.1249.2018.06611]
[10]李启华,邓立波,张培新.钙钛矿太阳能电池二氧化锡电子传输层的优化[J].深圳大学学报理工版,2019,36(4):392.[doi:10.3724/SP.J.1249.2019.04392]
 LI Qihua,DENG Libo,and ZHANG Peixin.Optimization of tin oxide-based electron transport layer for perovskite solar cells[J].Journal of Shenzhen University Science and Engineering,2019,36(3):392.[doi:10.3724/SP.J.1249.2019.04392]

备注/Memo

备注/Memo:
Received:2017-11-02;Accepted:2018-02-02
Foundation:National Natural Science Foundation of China (61475030,61522403,61605024)
Corresponding author:Professor LI Chun. E-mail: lichun@uestc.edu.cn
Citation:LI Chun, HU Xiaoying,HE Tianying,et al. Recent progress on transfer techniques of two-dimensional atomically thin semiconductor[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(3): 257-266.(in Chinese)
基金项目:国家自然科学基金资助项目(61475030,61522403,61605024)
作者简介:李春(1980—),男,电子科技大学教授、博士生导师、国家自然科学优秀青年基金获得者. 研究方向:光电功能材料与器件. E-mail: lichun@uestc.edu.cn
引文:李春,胡晓影,何天应,等. 二维原子晶体半导体转移技术研究进展[J]. 深圳大学学报理工版,2018,35(3):257-266.
更新日期/Last Update: 2018-04-28