[1]李成印,牛之慧,雷翔宇,等.磷烯的制备、性质及应用研究进展[J].深圳大学学报理工版,2018,35(3):234-256.[doi:10.3724/SP.J.1249.2018.03234]
 LI Chengyin,NIU Zhihui,LEI Xiangyu,et al.Research progress of the preparation, properties and application of phosphorene[J].Journal of Shenzhen University Science and Engineering,2018,35(3):234-256.[doi:10.3724/SP.J.1249.2018.03234]
点击复制

磷烯的制备、性质及应用研究进展()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第35卷
期数:
2018年第3期
页码:
234-256
栏目:
材料科学
出版日期:
2018-05-15

文章信息/Info

Title:
Research progress of the preparation, properties and application of phosphorene
文章编号:
201803002
作者:
李成印1牛之慧1雷翔宇1周艳1张晗2朱熹1
1)香港中文大学(深圳)理工学院,深圳 518172
2)深圳大学-新加坡国立大学光电科技协同创新中心,深圳 518060
Author(s):
LI Chengyin1 NIU Zhihui1 LEI Xiangyu1 ZHOU Yan1 ZHANG Han2 and ZHU Xi1
1) School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong Province, P.R.China
2) SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
二维材料 磷烯液相剥离光电性质光电器件医学应用
Keywords:
two-dimensional material phosphorene liquid-phase exfoliation optoelectronic property optoelectro-nic device medical application
分类号:
TQ 322
DOI:
10.3724/SP.J.1249.2018.03234
文献标志码:
A
摘要:
磷烯是继石墨烯和二硫化钼之后一种新型二维材料,具有优异的物理、化学和机械性能,在各类器件中具有很大应用潜力.本文评述磷烯的制备、电子能带结构、光电特性、改性方法及其器件应用.介绍了块体黑磷和磷烯的制备方法,及其物化特性,讨论了磷烯的修饰改性方法,阐述了磷烯在光电转换及医学领域的应用.
Abstract:
Phosphorene is a novel two-dimensional material that is more advanced than graphene and molybdenum disulfide. This material possesses excellent physical, chemical, and mechanical properties, which has great potential applications in a variety of electronic devices. This paper reviews the synthetic methods, electronic energy band structures, optoelectronic properties, modification methods, and device applications of phosphorene. We introduce the preparation strategies of phosphorene including the synthesis of bulk black phosphorus and phosphorene, followed by a summary of its physicochemical properties, and discuss the modification methods of phosphorene. Finally, we present the applications of phosphorene in optoelectronics conversion and medical field in detail.

参考文献/References:

[1] CORBRIDGE D E. Phosphorus: chemistry, biochemistry and technology[M]. Boca Raton, USA: CRC Press, 2013.
[2] BRIDGMAN P. Two new modifications of phosphorus[J]. Journal of the American Chemical Society, 1914, 36(7): 1344-1363.
[3] BRIDGMAN P. Further note on black phosphorus[J]. Journal of the American Chemical Society, 1916, 38(3): 609-612.
[4] JACOBS R B. Phosphorus at high temperatures and pressures[J]. The Journal of Chemical Physics, 1937, 5(12):945-953.
[5] KEYES R W. The electrical properties of black phosphorus[J]. Physical Review, 1953, 92(3): 580-584.
[6] GREENWOOD N N, EARNSHAW A. Chemistry of the elements[M]. Oxford, UK: Butterworth-Heinemann Elsevier, 2012.
[7] ZHU Zhen, TOMNEK D. Semiconducting layered blue phosphorus: a computational study[J].Physical Review Letters, 2014, 112(17): 176802.
[8] GUO Hongyan, LU Ning, DAI Jun, et al. Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers[J].Journal of Physical Chemistry C, 2014, 118(25): 14051-14059.
[9] GUAN Jie, ZHU Zhen, TOMNEK D. Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study[J]. Physical Review Letters, 2014, 113(4): 046804.
[10] WITTIG J, MATTHIAS B. Superconducting phosphorus[J]. Science, 1968, 160(3831): 994-995.
[11] RAJAGOPALAN M, ALOUANI M, CHRISTENSEN N E. Calculation of band structure and superconductivity in the simple cubic phase of phosphorus[J]. Journal of Low Temperature Physics, 1989, 75(1/2): 1-13.
[12] CHAN K T, MALONE B D, COHEN M L. Pressure dependence of superconductivity in simple cubic phosphorus[J]. Physical Review B, 2013, 88(6): 064517.
[13] KARUZAWA M, ISHIZUKA M, ENDO S. The pressure effect on the superconducting transition temperature of black phosphorus[J]. Journal of Physics: Condensed Matter, 2002, 14(44): 10759.
[14] KAWAMURA H, SHIROTANI I, TACHIKAWA K. Anomalous superconductivity and pressure induced phase transitions in black phosphorus[J].Solid State Communications, 1985, 54(9): 775-778.
[15] LI Likai, YU Yijun, YE Guojun, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.
[16] SANSONE G, MASCHIO L, USVYAT D, et al. Toward an accurate estimate of the exfoliation energy of black phosphorus: a periodic quantum chemical approach[J]. The Journal of Physical Chemistry Letters, 2015, 7(1): 131-136.
[17] LIU Han, NEAL A T, ZHU Zhen, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J].ACS Nano, 2014, 8(4): 4033-4041.
[18] LIU Han, DU Yuchen, DENG Yexin, et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications[J].Chemical Society Reviews, 2015, 44(9): 2732-2743.
[19] LING Xi, WANG Han, HUANG Shengxi, et al. The renaissance of black phosphorus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4523-4530.
[20] RYDER C R, WOOD J D, WELLS S A, et al. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus[J].ACS Nano, 2016, 10(4): 3900-3917.
[21] BRIDGMAN P W. Rough compressions of 177 substances to 40,000 kg/cm2[J]. Proceedings of the American Academy of Arts and Sciences, 1948: 71-87.
[22] BRIDGMAN P W. Effects of high shearing stress combined with high hydrostatic pressure[J]. Physical Review, 1935, 48(10): 825-847.
[23] BABA M, IZUMIDA F, TAKEDA Y, et al. Preparation of black phosphorus single crystals by a completely closed bismuth-flux method and their crystal morphology[J]. Japanese Journal of Applied Physics, 1989, 28(6R): 1019.
[24] MARUYAMA Y, INABE T, NISHII T, et al. Electrical conductivity of black phosphorus-silicon compound[J]. Synthetic Metals, 1989, 29(2/3): 213-218.
[25] MARUYAMA Y, INABE T, HE L, et al. Electrical conductivity of black phosphorus-germanium compound[J]. Bulletin of the Chemical Society of Japan, 1991, 64(3): 811-813.
[26] SHIROTANI I. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties[J].Molecular Crystals and Liquid Crystals, 1982, 86(1): 203-211.
[27] ENDO S, AKAHAMA Y, TERADA S, et al. Growth of large single-crystals of black phosphorus under high pressure[J]. Japanese Journal of Applied Physics, 1982, 21(8): L482-L484.
[28] LANGE S, SCHMIDT P, NILGES T. Au3SnP7@black phosphorus: an easy access to black phosphorus[J]. Inorganic Chemistry, 2007, 46(10): 4028-4035.
[29] NILGES T, KERSTING M, PFEIFER T. A fast low-pressure transport route to large black phosphorus single crystals[J]. Journal of Solid State Chemistry, 2008, 181(8): 1707-1711.
[30] KOEPF M, ECKSTEIN N, PFISTER D, et al. Access and in situ growth of phosphorene-precursor black phosphorus[J]. Journal of Crystal Growth, 2014, 405:6-10.
[31] PARK C M, SOHN H J. Black phosphorus and its composite for lithium rechargeable batteries[J]. Advanced Materials, 2007, 19(18): 2465.
[32] QIAN Jiangfeng, Wu Xianyong, Cao Yuliang, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie, 2013, 125(17):4731-4734.
[33] ZILETTI A, CARVALHO A, TREVISANUTTO P E, et al. Phosphorene oxides: bandgap engineering of phosphorene by oxidation[J]. Physical Review B, 2015, 91(8): 085407.
[34] MU Y, SI M S. The mechanical exfoliation mechanism of black phosphorus to phosphorene: a first-principles study[J]. EPL, 2015, 112(3): 37003.
[35] YASAEI P, KUMAR B, FOROOZAN T, et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation[J]. Advanced Materials, 2015, 27(11): 1887-1892.
[36] BRENT J R, SAVJANI N, LEWIS E A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014, 50(87): 13338-13341.
[37] KANG J, WOOD J D, WELLS S A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus[J]. ACS Nano, 2015, 9(4): 3596-3604.
[38] SOTOR J, SOBON G, KOWALCZYK M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J].Optics Letters, 2015, 40(16): 3885-3888.
[39] KANG J, WELLS S A, WOOD J D, et al. Stable aqueous dispersions of optically and electronically active phosphorene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11688-11693.
[40] GUO Zhinan, ZHANG Han, LU Shunbin, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics[J]. Advanced Functional Materials, 2015, 25(45): 6996-7002.
[41] ZHANG Xiao, XIE Haiming, LIU Zhengdong, et al. Black phosphorus quantum dots[J]. Angewandte Chemie, 2015, 54(12): 3653-3657.
[42] XU Yanhua, WANG Zhiteng, GUO Zhinan, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.
[43] LIANG Liangbo, WANG Jun, LIN Wenzhi, et al. Electronic bandgap and edge reconstruction in phosphorene materials[J]. Nano Letters, 2014, 14(11): 6400-6406.
[44] WOOMER A H, FARNSWORTH T W, HU Jun, et al. Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy[J]. ACS Nano, 2015, 9(9): 8869-8884.
[45] LIU Xiaolong, WOOD J D, CHEN Kansheng, et al. In situ thermal decomposition of exfoliated two-dimensional black phosphorus[J]. The Journal of Physical Chemistry Letters, 2015, 6(5): 773-778.
[46] LUO Xin, LU Xin, KOON G K, et al. Large frequency change with thickness in interlayer breathing mode-significant interlayer interactions in few layer black phosphorus[J]. Nano Letters, 2015, 15(6): 3931-3938.
[47] LING Xi, LIANG Liangbo, HUANG Shengxi, et al. Low-frequency interlayer breathing modes in few-layer black phosphorus[J]. Nano Letters, 2015, 15(6): 4080-4088.
[48] WEBER J, CALADO V. VAN DE SANDEN M. Optical constants of graphene measured by spectroscopic ellipsometry[J]. Applied Physics Letters, 2010, 97(9): 091904.
[49] ZILETTI A, CARVALHO A, CAMPBELL D K, et al. Oxygen defects in phosphorene[J]. Physical Review Letters, 2015, 114(4): 046801.
[50] UTT K L, RIVERO P, MEHBOUDI M, et al. Intrinsic defects, fluctuations of the local shape, and the photo-oxidation of black phosphorus[J]. ACS Central Science, 2015, 1(6): 320-327.
[51] YANG Teng, DONG Baojuan, WANG Jizhang, et al. Interpreting core-level spectra of oxidizing phosphorene: theory and experiment[J]. Physical Review B, 2015, 92(12): 125412.
[52] FAVRON A, GAUFRS E, FOSSARD F, et al. Photo oxidation and quantum confinement effects in exfoliated black phosphorus[J]. Nature Materials, 2015, 14(8): 826-832.
[53] KOENIG S P, DOGANOV R A, SCHMIDT H A, et al. Electric field effect in ultrathin black phosphorus[J]. Applied Physics Letters, 2014, 104(10): 103106.
[54] WOOD J D, WELLS S A, JARIWALA D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation[J]. Nano Letters, 2014, 14(12): 6964-6970.
[55] ISLAND J O, STEELE G A, VAN DER ZANT H S. Environmental instability of few-layer black phosphorus[J]. 2D Materials, 2015, 2(1): 011002.
[56] EDMONDS M T, TADICH A, CARVALHO A, et al. Creating a stable oxide at the surface of black phosphorus[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14557-14562.
[57] DOGANOV R A, KOENIG S P, YEO Y A, et al. Transport properties of ultrathin black phosphorus on hexagonal boron nitride[J]. Applied Physics Letters, 2015, 106(8): 083505.
[58] TAYARI V, HEMSWORTH N, FAKIH I, et al. Two-dimensional magnetotransport in a black phosphorus naked quantum well[J].Nature Communications, 2015, 6: 7702.
[59] KIM J S, LIU Yingnan, ZHU Weinan, et al. Toward air-stable multilayer phosphorene thin-films and transistors[J]. Scientific Reports, 2015, 5: 8989.
[60] MITTAL V. Encapsulation nanotechnologies[M]. HobokenJohn, USA: John Wiley & Sons, 2013.
[61] AVSAR A, VERA-MARUN I J, TAN Junyou, et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors[J]. ACS Nano, 2015, 9(4): 4138-4145.
[62] ZHU Weinan, YOGEESH M N, YANG Shixuan, et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator[J]. Nano Letters, 2015, 15(3): 1883-1890.
[63] TIAN He, GUO Qiushi, XIE Yujun, et al. Anisotropic black phosphorus synaptic device for neuromorphic applications[J]. Advanced Materials, 2016, 28(25): 4991-4997.
[64] TRAN V, SOKLASKI R, LIANG Yufeng, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 235319.
[65] CASTELLANOS-GOMEZ A. Black phosphorus: narrow gap, wide applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(21): 4280-4291.
[66] QIAO Jingsi, KONG Xianghua, HU Zhixin, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 4475.
[67] LI Pengke, APPELBAUM I. Electrons and holes in phosphorene[J]. Physical Review B, 2014, 90(11): 115439.
[68] CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E A, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001.
[69] YANG Jiong, XU Renjing, PEI Jiajie, et al. Unambiguous identification of monolayer phosphorene by phase-shifting interferometry[EB/OL]. [2014-12-20]. https://arxiv.org/ftp/arxiv/papers/1412/1412.6701.pdf
[70] YANG Jiong, XU Renjing, PEI Jiajie, et al. Optical tuning of exciton and trion emissions in monolayer phosphorene[J]. Light Science & Applications, 2015, 4(7):e312.
[71] 琚伟伟,李同伟,雍永亮,等.多层黑磷中厚度和应力依赖的能隙变化研究[J].原子与分子物理学报,2015(2):329-335.
JU Weiwei, LI Tongwei, YONG Yongliang, et al. Band gap of few-layer black phosphorus modulated by thickness and strain[J]. Journal of Atomic and Molecular Physics, 2015(2): 329-335.(in Chinese)
[72] LOW T, RODIN A S, CARVALHO A, et al. Tunable optical properties of multilayer black phosphorus thin films[J]. Physical Review B, 2014, 90(7): 075434.
[73] RUDENKO A N, KATSNELSON M I. Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus[J]. Physical Review B, 2014, 89(20): 201408.
[74] FEI Ruixiang, YANG Li. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus[J]. Nano Letters, 2014, 14(5): 2884-2889.
[75] FUJIHISA H, AKAHAMA Y, KAWAMURA H, et al. Incommensurate structure of phosphorus phase IV[J]. Physical Review Letters, 2007, 98(17): 175501.
[76] WANG Xiaomu, JONES A M, SEYLER K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nature Nanotechnology, 2015, 10(6): 517-521.
[77] BAIK S S, KIM K S, YI Y, et al. Emergence of two-dimensional massless dirac fermions, chiral pseudospins, and berry’s phase in potassium doped few-layer black phosphorus[J]. Nano Letters, 2015, 15(12): 7788-7793.
[78] KIM J, BAIK S S, RYU S H, et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus[J]. Science, 2015, 349(6249): 723-726.
[79] WU Juanxia, MAO Nannan, XIE Liming, et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy[J]. Angewandte Chemie-International Edition, 2015, 54(8): 2366-2369.
[80] JIANG Jinwu, PARK H S. Negative Poisson’s ratio in single-layer black phosphorus[J]. Nature Communications, 2014, 5: 4727.
[81] DU Yuchen, MAASSEN J, WU Wangran, et al. Auxetic black phosphorus: a 2D material with negative Poisson’s ratio[J]. Nano Letters, 2016, 16(10): 6701-6708.
[82] TAO Wei, ZHU Xianbing, YU Xinghua, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics[J]. Advanced Materials, 2017, 29(1): 1603276.
[83] WANG Zenghui, JIA Hao, ZHENG Xuqian, et al. Resolving and tuning mechanical anisotropy in black phosphorus via nanomechanical multimode resonance spectromicroscopy[J]. Nano Letters, 2016, 16(9): 5394-5400.
[84] SAITO Y, IIZUKA T, KORETSUNE T, et al. Gate-tuned thermoelectric power in black phosphorus[J]. Nano Letters, 2016, 16(8): 4819-4824.
[85] LUO Zhe, MAASSEN J, DENG Yexin, et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus[J].Nature Communications, 2015, 6: 8572.
[86] SORKIN V, PAN H, SHI H, et al. Nanoscale transition metal dichalcogenides: structures, properties, and applications[J]. Critical Reviews in Solid State and Materials Sciences, 2014, 39(5): 319-367.
[87] KOU Liangzhi, CHEN Changfeng, SMITH S C. Phosphorene: fabrication, properties, and applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(14): 2794-2805.
[88] RYDER C R, WOOD J D, WELLS S A, et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry[J]. Nature Chemistry, 2016, 8(6): 597-602.
[89] ZHAO Yuetao, WANG Huaiyu, HUANG Hao, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Chemie, 2016, 55(16): 5003-5007.
[90] XIANG Du, HAN Cheng, WU Jing, et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus[J]. Nature Communications, 2015, 6: 6485.
[91] XU Yijun, YUAN Jian, FEI Linfeng, et al. Selenium-doped black phosphorus for high-responsivity 2D photodetectors[J]. Small, 2016, 12(36): 5000-5007.
[92] YANG Bingchao, WAN Bensong, ZHOU Qionghua, et al. Te-doped black phosphorus field-effect transistors[J]. Advanced Materials, 2016, 28(42): 9408-9415.
[93] BUSCEMA M, GROENENDIJK D J, STEELE G A, et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating[J]. Nature Communications, 2014, 5: 4651.
[94] ROBBINS M C, KOESTER S J. Black phosphorus p- and n-MOSFETs with electrostatically doped contacts[J]. IEEE Electron Device Letters, 2017, 38(2): 285-288.
[95] FAN X F, ZHENG W T, KUO J L, et al. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(16): 7793-7797.
[96] KULISH V V, MALYI O I, PERSSON C, et al. Adsorption of metal adatoms on single-layer phosphorene[J]. Physical Chemistry Chemical Physics: PCCP, 2015,17(2): 992-1000.
[97] KULISH V V, MALYI O I, PERSSON C,et al.Phosphorene as an anode material for Na-ion batteries: a first-principles study[J]. Physical Chemistry Chemical Physics, 2015, 17(21): 13921-13928.
[98] KOENIG S P, DOGANOV R A, SEIXAS L, et al. Electron doping of ultrathin black phosphorus with Cu adatoms[J]. Nano Letters, 2016, 16(4): 2145-2151.
[99] CHEN Long, ZHOU Guangmin, LIU Zhibo, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery[J]. Advanced Materials, 2016, 28(3): 510-517.
[100] WANG Zenghui, JIA Hao, ZHENG Xuqian, et al. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies[J]. Nanoscale, 2015, 7(3): 877-884.
[101] WAN Bensong, YANG Bingchao, WANG Yue, et al. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation[J]. Nanotechnology, 2015, 26(43): 435702.
[102] HO P H, LI Minken, SANKAR R, et al. Tunable photo induced carrier transport of a black phosphorus transistor with extended stability using a light-sensitized encapsulated layer[J]. ACS Photonics, 2016, 3(6): 1102-1108.
[103] WANG Zongrui, DONG Huanli, LI Tao, et al. Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions[J]. Nature Communications, 2015, 6: 7478.
[104] ZHANG Yu, WANG Huanwen, LUO Zhongzhen, et al. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties[J]. Advanced Energy Materials, 2016, 6(12): 1600453.
[105] ZHENG Jilin, TANG Xian, YANG Zhenghua, et al. Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation[J]. Advanced Optical Materials, 2017, 5(9):1700026.
[106] LU S B, MIAO L L, GUO Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194.
[107] YANG Ying, GAO Jing, ZHANG Zheng, et al. Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells[J]. Advanced Materials, 2016, 28(40): 8937-8944.
[108] LONG Mingsheng, GAO Anyuan, WANG Peng, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus[J].Science Advances, 2017, 3(6): e1700589.
[109] REN Xiaohui, LI Zhongjun, HUANG Zongyu, et al. Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector[J].Advanced Functional Materials, 2017, 27(18): 1606834.
[110] CHEN Wansong, OUYANG Jiang, LIU Hong, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer[J]. Advanced Materials, 2017, 29(5): 1603864.
[111] PENG Jian, LAI Youqun, CHEN Yuanyuan, et al. Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir[J]. Small, 2017, 13(15): 1603589.
[112] LI Na, WENG Zhe, WANG Yarong, et al. An aqueous dissolved polysulfide cathode for lithium-sulfur batteries[J]. Energy & Environmental Science, 2014, 7(10): 3307-3312.
[113] BRUCE P, FREUNBERGER S, HARDWICK L, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29.
[114] BRESSER D, PASSERINI S, SCROSATI B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries - a review[J]. Chemical Communications, 2013, 49(90): 10545-10562.
[115] JI Xiulei, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
[116] SEH Z W, WANG Haotian, LIU Nian, et al. High-capacity Li2S-graphene oxide composite cathodes with stable cycling performance[J]. Chemical Science, 2014, 5(4): 1396-1400.
[117] ZHENG Guangyuan, ZHANG Qianfan, CHA J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle Life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3): 1265-1270.
[118] ZHANG Qianfan, WANG Yapeng, SEH Z W, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries[J]. Nano Letters, 2015, 15(6): 3780-3786.
[119] TAO Xinyong, WANG J, YING Zhuogao, et al. Strong sulfur binding with conducting Magnéli-phase Ti(n)O2(n-1) nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters, 2014, 14(9): 5288-5294.
[120] SUN Jie, SUN Yongming, PASTA M, et al. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(44): 9797-9803.

相似文献/References:

[1]李春,胡晓影,何天应,等.二维原子晶体半导体转移技术研究进展[J].深圳大学学报理工版,2018,35(3):257.[doi:10.3724/SP.J.1249.2018.03257]
 LI Chun,HU Xiaoying,HE Tianying,et al.Recent progress on transfer techniques oftwo-dimensional atomically thin semiconductor[J].Journal of Shenzhen University Science and Engineering,2018,35(3):257.[doi:10.3724/SP.J.1249.2018.03257]
[2]张晗,邹吉菲,罗劭娟,等.基于二维材料气体传感器的研究[J].深圳大学学报理工版,2018,35(3):221.[doi:10.3724/SP.J.1249.2018.03221]
 ZHANG Han,ZOU Jifei,LUO Shaojuan,et al.Research progress of gas sensors based on two-dimensional materials[J].Journal of Shenzhen University Science and Engineering,2018,35(3):221.[doi:10.3724/SP.J.1249.2018.03221]
[3]宋宗鹏,朱海鸥,蒋凌峰,等.飞秒激光诱导单层二硫化钨的光响应研究[J].深圳大学学报理工版,2018,35(6):611.[doi:10.3724/SP.J.1249.2018.06611]
 SONG Zongpeng,ZHU Haiou,JIANG Lingfeng,et al.Femtosecond laser-induced optical response of monolayer WS2[J].Journal of Shenzhen University Science and Engineering,2018,35(3):611.[doi:10.3724/SP.J.1249.2018.06611]

备注/Memo

备注/Memo:
Received:2017-12-05;Accepted:2018-01-30
Foundation:National Natural Science Foundation of China (11574137)
Corresponding author:Professor ZHU Xi.E-mail: zhuxi@cuhk.edu.cn
Citation:LI Chengyin, NIU Zhihui, LEI Xiangyu, et al. Research progress of the preparation, properties and application of phosphorene[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(3): 234-256.(in Chinese)
基金项目:国家自然科学基金资助项目(11574137)
作者简介:李成印(1991—),男,香港中文大学(深圳)博士研究生.研究方向:低维材料的理论计算及性质预测.E-mail:217019007@link.cuhk.edu.cn
引文:李成印,牛之慧,雷翔宇,等.磷烯的制备、性质及应用研究进展[J]. 深圳大学学报理工版,2018,35(3):234-256.
更新日期/Last Update: 2018-04-28