参考文献/References:
[1] CHUNDAWAT S S, BECKHAM G T, HIMMEL M E,et al. Deconstruction of lignocellulosic biomass to fuels and chemicals[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2(2): 121-145.
[2] JUTURU V, WU Jinchuan. Microbial cellulases: engineering, production and applications[J].Renewable and Sustainable Energy Reviews, 2014, 33: 188-203.
[3] 来亚鹏,邓婷婷,刘 刚,等. 同源过表达BglR对嗜热毁丝霉β-葡萄糖苷酶活性的影响[J]. 中国生物工程杂志,2017,37(7):64-71.
LAI Yapeng, DENG Tingting, LIU Gang, et al. The influence of homologous overexpression of BglR on β-glucosidase activities in Myceliophthora thermophila[J]. China Biotechnology, 2017,37(7):64-71.(in Chinese)
[4] MOUCHACCA J. Thermophilic fungi: biodiversity and taxonomic status[J]. Cryptogamie Mycologie,1997,18(1):19-69.
[5] MAHESHWARI R, BHARADWAJ G, BHAT M K. Thermophilic fungi: their physiology and enzymes[J].Microbiology and Molecular Biology Reviews,2000,64(3):461-488.
[6] MORGENSTERN I, POWLOWSKI J, ISHMAEL N,et al. A molecular phylogeny of thermophilic fungi[J].Fungal Biology,2012,116(4):489-502.
[7] BERKA R M, GRIGORIEV I V, OTILLAR R,et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris[J].Nature Biotechnology,2011,29(10):922-927.
[8] MATSAKAS L, ANTONOPOULOU I, CHRISTAKOPOULOS P. Evaluation of Myceliopthora thermophila as an enzyme factory for the production of thermophilic cellulolytic enzymes[J]. BioResources, 2015, 10(3):5140-5158.
[9] VISSER H, JOOSTEN V, PUNT P J,et al. Research: Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1[J]. Industrial Biotechnology, 2011, 7(3): 214-223.
[10] KOLBUSZ M A, DI FALCO M, ISHMAEL N,et al. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila [J]. Fungal Genetics and Biology, 2014, 72: 10-20.
[11] SINGH B. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential[J]. Critical Reviews in Biotechnology, 2016, 36(1): 59-69.
[12] LIU Qian, GAO Ranran, LI Jingen,et al. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering[J].Biotechnology for Biofuels,2017,10(1):1.
[13] WANG Juan, WU Yaning, GONG Yanfen,et al. Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1[J].Journal of Industrial Microbiology & Biotechnology,2015,42(9):1233-1241.
[14] KLAUBAUF S, NARANG H M, POST H,et al. Similar is not the same: differences in the function of the (hemi-) cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi[J]. Fungal Genetics and Biology, 2014, 72: 73-81.
[15] YANG Fan, GONG Yanfen, LIU Gang,et al. Enhancing cellulase production in thermophilic fungus myceliophthora thermophila ATCC42464 by RNA interference of cre1 gene expression[J]. Journal of Microbiology and Biotechnology, 2015, 25(7):1101-1107.
[16] 杨帆. 转录因子CRE1及ACE1在嗜热毁丝霉纤维素酶基因表达调控中的作用[D]. 深圳:深圳大学,2015.
YANG Fan. The role of transcription factors CRE1 and ACE1 in regulation of cellulase gene expression of Myceliophthora thermophila ATCC42464 [D]. Shenzhen: Shenzhen University, 2015.(in Chinese)
[17] AMORE A, GIACOBBE S, FARACO V. Regulation of cellulase and hemicellulase gene expression in fungi[J]. Current genomics, 2013, 14(4): 230-249.
[18] PORTNOY T, MARGEOT A, SEIDL-SEIBOTH V, et al. Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulose[J]. Eukaryotic cell, 2011, 10(2): 262-271.
[19] MORIN R, BAINBRIDGE M, FEJES A,et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing[J].BioTechniques,2008,45(1):81-94.
[20] CHU Yongjun, COREY D R. RNA sequencing: platform selection, experimental design, and data interpretation[J].Nucleic Acid Therapeutics,2012,22(4):271-274.
[21] WANG Zhong, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics[J].Nature Reviews Genetics,2009,10(1):57-63.
[22] TRAPNELL C, WILLIAMS B A, PERTEA G,et al. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms[J]. Nature biotechnology, 2010, 28(5): 511-515.
[23] SONESON C, DELORENZI M. A comparison of methods for differential expression analysis of RNA-seq data[J]. BMC bioinformatics, 2013, 14(1): 91.
[24] PENTTIL M, NEVALAINEN H, RTT M,et al. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei[J].Gene,1987,61(2):155-164.
[25] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J].Methods,2001,25(4):402-408.
[26] EVELEIGH D E, MANDELS M, ANDREOTTI R, et al. Measurement of saccharifying cellulase[J].Biotechnology for Biofuels,2009,2(1):21.
[27] MANSOUR A A, DA COSTA A, ARNAUD T, et al. Review of lignocellulolytic enzyme activity analyses and scale-down to microplate-based assays[J]. Talanta, 2016, 150: 629-637.
[28] 麦国琴,许晓萍,余翠媚,等.产木聚糖酶和纤维素酶真菌的酶学性质分析[J]. 食品研究与开发,2011, 32(9) :179-183.
MAI Guoqin, XU Xiaoping, YU Cuimei, et al. Screening of cellulase and xylanase-pruducing fungi from mangrove soil and characterization of the enzymatic reactions[J]. Food Research and Development, 2011, 32(9) :179-183.(in Chinese)
[29] BAILEY M J, BIELY P, POUTANEN K. Interlaboratory testing of methods for assay of xylanase activity[J]. Journal of Biotechnology, 1992, 23(3): 257-270.
[30] 周娇娇,佘炜怡,王浩入,等. 5-氮杂-2-脱氧胞苷对里氏木霉产纤维素酶的影响[J]. 深圳大学学报理工版,2017,34(2):122-131.
ZHOU Jiaojiao, SHE Huiyi, WANG Haoru, et al. Effect of 5-Aza-2′-deoxycytidine on the expression of cellulases in Trichoderma reesei[J].Journal of Shenzhen University Science and Engineering,2017,34(2):122-131.(in Chinese)