参考文献/References:
[1] 刘昀,刘国宝,李冉辉,等.胚胎晚期富集蛋白与生物的干旱胁迫耐受性[J]. 生物工程学报,2010, 26(5): 569-575.
Liu Yun, Liu Guobao, Li Ranhui, et al. Functions of late embryogenesis abundant proteins in desiccation-tolerance of organisms: a review[J]. Chinese Journal of Biotechnology, 2010, 26(5): 569-575.(in Chinese)
[2] Garay-Arroyo A, Colmenero-Flores J M, Garciarrubio A, et al. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit[J]. The Journal of Biological Chemistry, 2000, 275(8): 5668-5674.
[3] Su Mengying, Huang Gan, Zhang Qing, et al. The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana[J]. Plant Science, 2016, 247: 93-103.
[4] Roberts J K, Desimone N a, Lingle W L, et al. Cellular concentrations and uniformity of cell-type accumulation of two lea proteins in cotton embryos[J]. The Plant Cell, 1993, 5(7): 769-780.
[5] Olvera-Carrillo Y,Campos F,Reyes J L,et al.Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis[J]. Plant Physiology, 2010, 154(1): 373-390.
[6] Cuevas-Velazquez C L, Saab-Rincón G, Reyes J L, et al. The unstructured n-terminal region of Arabidopsis group 4 late embryogenesis abundant (LEA) proteins is required for folding and for chaperone-like activity under water deficit[J]. The Journal of Biological Chemistry, 2016, 291(20): 10893-10903.
[7] Shih M D, Hsieh T Y, Lin T P, et al. Characterization of two soybean (Glycine max L.) LEA IV proteins by circular dichroism and Fourier transform infrared spectrometry[J]. Plant and Cell Physiology, 2010, 51(3): 395-407.
[8] Liu Guobao, Liu Ke, Gao Yang, et al. Involvement of C-Terminal histidines in soybean PM1 protein oligomerization and Cu2+ binding[J]. Plant and Cell Physiology, 2017, 58(6): 1018-1029.
[9] Wang Hui, Hu Tangjin, Huang Jianzi, et al. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance[J]. International Journal of Molecular Sciences, 2013, 14(5): 8775-8786.
[10] Hara M, Kondo M, Kato T. A KS-type dehydrin and its related domains reduce Cu-promoted radical Generation and the histidine residues contribute to the radical-reducing activities[J]. Journal of Experimental Botany, 2013, 64(6): 1615-1624.
[11] Park S H, Shalongo W, Stellwagen E. The role of PII conformations in the calculation of peptide fractional helix content[J]. Protein Science, 1997, 6(8): 1694-1700.
[12] Soulages J L, Kim K, Arrese E L, et al. Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly(L-proline)-type II structure[J]. Plant Physiology, 2003, 131(3): 963-975.
[13] González-Mendoza D, Espadas Y Gil F, Escoboza-Garcia F, et al. Copper stress on photosynthesis of black mangle (Avicennia germinans)[J]. Anais da Academia Brasileira de Ciencias, 2013, 85(2): 665-670.
[14] Chamseddine M, Wided B A, Guy H, et al. Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves[J]. Plant Growth Regulation, 2008, 57(1): 89-99.
[15] 金枫,王翠,林海建,等.植物重金属转运蛋白研究进展[J]. 应用生态学报, 2010, 21(7): 1875-1882.
Jin Feng, Wang Cui, Lin Haijian, et al. Heavy metal-transport proteins in plants: a review[J]. Chinese Journal of Applied Ecology, 2010, 21(7): 1875-1882.(in Chinese)
[16] Mu Peiqiang, Feng Dongru, Su Jianbin, et al. Cu2+ triggers reversible aggregation of a disordered His-rich dehydrin MpDhn12 from Musa paradisiacal[J]. Journal of Biochemistry, 2011, 150(5): 491-499.
[17] Finkelstein R. Abscisic acid synthesis and response[J]. The Arabidopsis Book, 2013, 11(11): e0058.
[18] Mowla S B, Cuypers A, Driscoll S P, et al. Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant(LEA)-like protein in oxidative stress tolerance[J]. Plant Journal, 2006, 48(5): 743-756.
[19] Tiffany M L, Krimm S. New chain conformations of poly(glutamic acid) and polylysine[J]. Biopolymers, 1968, 6(9): 1379-1382.
[20] Rath A, Davidson A R, Deber C M. The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition[J]. Biopolymers, 2005, 80(2-3): 179-185.
[21] Zou Yongdong, Hong Ruisha, He Shuwen, et al. Polyproline II structure is critical for the enzyme protective function of soybean Em (LEA1) conserved domains[J]. Biotechnology Letters, 2011, 33(8): 1667-1673.
[22] Rahman L N, Smith G S, Bamm V V, et al. Phosphorylation of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 facilitates cation-induced conformational changes and actin assembly[J]. Biochemistry, 2011, 50(44): 9587-9604.
相似文献/References:
[1]刘 昀,李冉辉,郑易之,等.大豆PM2蛋白及其结构域可提高烟草耐盐性[J].深圳大学学报理工版,2007,24(1):95.
LIU Yun,LI Ran-hui,ZHENG Yi-zhi,et al.Soybean PM2 protein and its 22-mer region enhance salt tolerance of tobacco plants[J].Journal of Shenzhen University Science and Engineering,2007,24(5):95.
[2]叶展辉,郑易之,刘 昀.大豆PM2蛋白11氨基酸结构域的耐盐功能鉴定[J].深圳大学学报理工版,2006,23(4):362.
YE Zhan-hui,ZHENG Yi-zhi,and LIU Yun.11-mer repeating region in soybean PM2 protein enhances salt tolerance of Escherichia coli[J].Journal of Shenzhen University Science and Engineering,2006,23(5):362.
[3]蔡丹,郑易之,兰英.大豆LEA蛋白Em的表达可提高大肠杆菌和烟草耐盐性[J].深圳大学学报理工版,2006,23(3):230.
CAI Dan,ZHENG Yi-zhi,and LAN Ying.Expression of Em gene(LEA1) from soybean immature seeds confers salt tolerance to Escherichia coli and tobacco plants[J].Journal of Shenzhen University Science and Engineering,2006,23(5):230.
[4]余玉雯,孙海丹,郑易之,等.大豆耐盐相关基因的分离及其功能鉴定[J].深圳大学学报理工版,2004,21(4):324.
YU Yu-wen,SUN Hai-dan,ZHENG Yi-zhi,et al.Isolation and characterization of genes related to salt-tolerance in soybean[J].Journal of Shenzhen University Science and Engineering,2004,21(5):324.