[1]李菊花,郑斌,纪磊.凝析油临界含油饱和度定量表征新方法[J].深圳大学学报理工版,2017,34(1):82-90.[doi:10.3724/SP.J.1249.2017.01082]
 Li Juhua,Zheng Bin,and Ji Lei.A new method of quantitative characterization of condensate critical flow saturation[J].Journal of Shenzhen University Science and Engineering,2017,34(1):82-90.[doi:10.3724/SP.J.1249.2017.01082]
点击复制

凝析油临界含油饱和度定量表征新方法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年第1期
页码:
82-90
栏目:
环境与能源
出版日期:
2017-01-09

文章信息/Info

Title:
A new method of quantitative characterization of condensate critical flow saturation
作者:
李菊花12郑斌3纪磊12
1)长江大学油气资源与勘探技术教育部重点实验室,湖北武汉 430100
2) 长江大学石油工程学院,湖北武汉 430100
3)中国石油新疆油田分公司新港公司,新疆吾尔族自治区 克拉玛依 834000
Author(s):
Li Juhua12 Zheng Bin3 and Ji Lei12
1) Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, Hubei Province, P.R.China
2) Yangtze University, Petroleum Engineering, Wuhan 430100, Hubei Province, P.R.China
3) Xinjiang Oilfield Company, PetroChina Company Limited, Karamay 834000, Xinjiang Uygur Autonomous Region, P.R.China
关键词:
油气田开发分形网络模型凝析油微观分布临界含油饱和度毛管准数
Keywords:
oil-gas field development fractal pore network condensate oil micro distribution critical flow saturation capillary number
分类号:
TE 372
DOI:
10.3724/SP.J.1249.2017.01082
文献标志码:
A
摘要:
为定量表征多孔介质中凝析油临界含油饱和度,建立临界流动条件下气-液-固界面发生形变时对应的凝析油膜及凝析油段塞的力学模型.基于随机分形微观孔隙网络模型,动态模拟凝析油微观分布特征,模拟多孔介质中各因素对凝析油临界含油饱和度的影响.研究表明,采用建立的新型微观网络动态模拟方法可以较准确地定量计算凝析油临界含油饱和度,模拟表征凝析油的微观分布规律.凝析油临界含油饱和度随着平均孔隙半径的增大而减小,随着分形维数的增大而增大;凝析油气界面张力对临界含油饱和度的影响趋势存在一个临界值.当界面张力小于该临界值时,随着界面张力增加凝析油临界含油饱和度大幅增加;当界面张力大于该值后,临界含油饱和度值增幅减低;毛管准数越大凝析油临界含油饱和度越小.凝析油临界含油饱和度值受静态和动态参数影响,在凝析气藏开发过程中,通过控制合理生产压差降低凝析油临界含油饱和度,对提高凝析气井产能是一种有效途径.
Abstract:
Based on the established random fractal pore network model and mechanics model of condensate film and slug at the deformation status in gas-liquid-solid boundary, the microscopic distribution feature of condensate oil was simulated to determine condensate critical flow saturation in porous medium. The result shows that it is an efficient method to characterize condensate oil micro distribution and calculate condensate critical flow saturation. The critical condensate saturation decreases with an increase in the average pore radius, but increases with an increase in fractal dimension. There exists a critical gas/oil interfacial tension. At an interfacial tension below the critical value, the critical condensate saturation increases drastically with an increase interfacial tension, while it keeps almost unchanged at an interfacial tension above this critical value. A higher capillary number results in a smaller critical condensate saturation. It is indicated that static and dynamic parameters have effects on condensate critical flow saturation. Therefore, it is an effectual approach to properly control production pressure drop to reduce negative impact of gas well production capacity in the producing process.

参考文献/References:

[1] Barnum R S, Brinkman F P, Richardson T W, et al. Gas condensate reservoir behavior: productivity and recovery reduction due to condensation[C]// Conference of Annual meeting of the Society of Petroleum Engineers. Dallas, USA: Society of Petroleum Engineers, 1995: SPE30767.
[2] 李建奇,杨志伦,张春雨,等.反凝析作用对苏里格气田上古生界气藏开发的影响[J] . 天然气工业, 2015 , 35(4): 45-51.
Li Jianqi,Yang Zhilun, Zhang Chunyu, et al. Impacts of retrograde condensation on the development of upper paleozoic gas reservoirs in the Sulige gasfield Ordos Basin[J]. Natural Gas Industry, 2015, 35(4): 45-51.(in Chinese)
[3] Nasriani H R, Borzajani A A, Iraji B, et al. Investigation into the effect of capillary number on productivity of a lean gas condensate reservoir[J]. Journal of Petroleum Science and Engineering, 2015, 135: 384-390.
[4] 姜贻伟,戚志林,郭平,等.低渗凝析气藏凝析油临界流动饱和度实验研究[J].天然气工业,2006,26(9):96-99.
Jiang Yiwei, Qi Zhilin, Guo Ping, et al. Laboratory study on the critical flow saturation degree of condensate oil in low-permeability condensate gas reservoir[J]. Natural Gas Industry,2006,26(9):96-99.(in Chinese)
[5] Krummel A T, Datta S S, Munster S, et al. Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium[J]. AIChE Journal, 2013, 59(3): 1022-1029.
[6] 陈浩,杨胜来,于东海,等.多孔介质内流体相态特征超声波探测研究进展[J].西南石油大学学报自然科学版,2013,35(1):67-73.
Chen Hao,Yang Shenglai,Yu Donghai, et al.Research progress of the ultrasonic derection in phase behavior of fluids in porous media[J]. Journal of Southwest Petroleum University Science & Technology Edition, 2013,35(1):67-73.(in Chinese)
[7] Zhou C, Wu X, Li H, et al. Research of improvement and optimization of critical flow rate model in condensate gas well[C]// Offshore Technology Conference Asia. Kuala Lumpur,Malaysia: Offshore Technology Conference.2016:1-12.
[8] Li Q, Li X, Zan K, et al. Experimental research of critical condensate saturation and flow characteristics of gas condensate reservoir[J]. Petroleum Science and Technology, 2013, 31(13):1361-1370.
[9] 李骞,李相方,昝克,等.凝析油临界流动饱和度确定新方法[J]. 石油学报,2010,31(5):825-833.
Li Qian, Li Xiangfang, Zan Ke, et al. A new method to determine critical condensate saturation[J]. Acta Petrolei Sinica, 2010, 31(5) :825-833.(in Chinese)
[10] Li Kewen, Firoozabadi A. Phenomenological modeling of critical condensate saturation and relative permeabilities in gas/condensate systems[J]. SPE Journal, 2000, 5(2):138-147.
[11] Wang X, Mohanty K K. Pore-network model of flow in gas/condensate reservoirs[J]. SPE Journal, 2000, 5(4): 426-434.
[12] Li Juhua, Zheng Bin. Digital core and pore network model reconstruction based on random fractal theory[J]. International Journal of Energy & Statistics, 2015, 3(1):1-13.
[13] 韩丹岫. 多孔介质凝析油气流动机理研究[D]. 北京:中国石油大学(北京),2009.
Han Danxiu. Flow mechanism of gas condensate in porous media[D]. Beijing: China University of Petroleum, 2009. (in Chinese)
[14] William R W, Piri M. Pore diameter effects on phase behavior of a gas condensate in graphitic one- and two-dimensional nano-pores[J]. Journal of Molecular Modeling, 2016, 22(1):1-9.
[15] Mohammed S A. Dynamic pore-scale modeling of two-phase flow[D]. London: University of London, 2004.
[16] 杨胜来,魏俊之. 油层物理学[M].北京:石油工业出版社,2004:155-156.
Yan Shenglai, Wei Junzhi. Reservoir physics[M]. Beijing: Petroleum Industry Press, 2004:155-156.(in Chinese)
[17] Blunt Martin J. Flow in porous media-pore-network models and multiphase flow[J]. Journal of Colloid & Interface Science ,2001, 6(3), 197-207

[18] 孙军昌,杨正明,唐立根,等.致密气藏束缚水分布规律及含气饱和度研究[J]. 深圳大学学报理工版,2011,28(5):377-383.
Sun Junchang, Yang Zhengming, Tang Ligen, et al. Study on distribution law of irreducible water and gas saturation of tight sandstone gas reservoir[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(5): 377-383.(in Chinese)
[19] 杨智,邹才能,吴松涛,等.含油气致密储层纳米级孔吼特征及意义[J].深圳大学学报理工版,2015,32(3):257-265.
Yang Zhi, Zou Caineng, Wu Songtao, et al. Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(3):257-265.(in Chinese)

相似文献/References:

[1]赵金省,李天太,张明,等.聚合物驱后氮气泡沫驱油特性及效果[J].深圳大学学报理工版,2010,27(3):361.
 ZHAO Jin-sheng,LI Tian-tai,ZHANG Ming,et al.Study on the displacement characteristics of nitrogen foam flooding after polymer flooding[J].Journal of Shenzhen University Science and Engineering,2010,27(1):361.
[2]叶瑞松,宋 君.分形图像压缩算法[J].深圳大学学报理工版,2001,18(1):84.
 YE Rui-song and SONG Jun.Fractal Image Compression[J].Journal of Shenzhen University Science and Engineering,2001,18(1):84.
[3]黄瑶,程时清,何佑伟,等.流量不均鱼骨状多分支水平井不稳定压力分析[J].深圳大学学报理工版,2016,33(2):202.[doi:10.3724/SP.J.1249.2016.02202]
 Huang Yao,Cheng Shiqing,He Youwei,et al.Transient pressure analysis of fishbone multi-lateral horizontal well with non-uniform flux density[J].Journal of Shenzhen University Science and Engineering,2016,33(1):202.[doi:10.3724/SP.J.1249.2016.02202]
[4]史雪冬,岳湘安,凌生财,等.特高含水油藏深部调驱体系三维物理模拟[J].深圳大学学报理工版,2018,35(2):179.[doi:10.3724/SP.J.1249.2018.02179]
 SHI Xuedong,YUE Xiangan,LING Shengcai,et al.Physical simulation on system of deep profile control and flooding on high water cut reservoir[J].Journal of Shenzhen University Science and Engineering,2018,35(1):179.[doi:10.3724/SP.J.1249.2018.02179]
[5]陈民锋,尹承哲,王振鹏,等.直井—水平井组合井网平面井间动用规律[J].深圳大学学报理工版,2018,35(4):368.[doi:10.3724/SP.J.1249.2018.04368]
 CHEN Minfeng,YIN Chengzhe,WANG Zhenpeng,et al.Inter-well production of the horizontal-vertical composed well pattern[J].Journal of Shenzhen University Science and Engineering,2018,35(1):368.[doi:10.3724/SP.J.1249.2018.04368]
[6]刘永辉,艾先婷,罗程程,等.预测水平井携液临界气流速的新模型[J].深圳大学学报理工版,2018,35(6):551.[doi:10.3724/SP.J.1249.2018.06551]
 LIU Yonghui,AI Xianting,LUO Chengcheng,et al.A new model for predicting critical gas velocity ofliquid loading in horizontal well[J].Journal of Shenzhen University Science and Engineering,2018,35(1):551.[doi:10.3724/SP.J.1249.2018.06551]
[7]刘永辉,吴朋勃,罗程程,等.泡沫排水采气适用界限的实验研究[J].深圳大学学报理工版,2020,37(5):490.[doi:10.3724/SP.J.1249.2020.05490]
 LIU Yonghui,WU Pengbo,LUO Chengcheng,et al.Experimental study on the applicable range of surfactant injection technology[J].Journal of Shenzhen University Science and Engineering,2020,37(1):490.[doi:10.3724/SP.J.1249.2020.05490]

备注/Memo

备注/Memo:
Received:2016-01-07;Revised:2016-08-27;Accepted:2016-09-20
Foundation:National Natural Science Foundation of China (51504039)
Corresponding author:Professor Li Juhua.E-mail: lucyli7509@163.com
Citation:Li Juhua,Zheng bin,Ji Lei.A new method of quantitative characterization of condensate critical flow saturation[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(1): 82-90.(in Chinese)
基金项目:国家自然科学基金资助项目(51504039)
作者简介:李菊花(1975—),女,长江大学教授. 研究方向:油气田开发. E-mail: lucyli7509@163.com
引文:李菊花,郑斌,纪磊. 凝析油临界含油饱和度定量表征新方法[J]. 深圳大学学报理工版,2017,34(1):82-90.
更新日期/Last Update: 2016-12-30