[1]童芸芸,叶良,马超.钢筋腐蚀产物实时检测的再钝化机理分析[J].深圳大学学报理工版,2017,34(1):75-81.[doi:10.3724/SP.J.1249.2017.01075]
 Tong Yunyun,Ye Liang,and Ma Chao.Real time analysis on repassivation mechanism of steel rebar corrosion products[J].Journal of Shenzhen University Science and Engineering,2017,34(1):75-81.[doi:10.3724/SP.J.1249.2017.01075]
点击复制

钢筋腐蚀产物实时检测的再钝化机理分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年第1期
页码:
75-81
栏目:
土木建筑工程
出版日期:
2017-01-09

文章信息/Info

Title:
Real time analysis on repassivation mechanism of steel rebar corrosion products
文章编号:
201701010
作者:
童芸芸叶良马超
浙江科技学院土木与建筑工程学院,浙江杭州 310023
Author(s):
Tong Yunyun Ye Liang and Ma Chao
School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou 310023, Zhejiang Province, P.R.China
关键词:
建筑材料钢筋混凝土碳化电化学再碱化处理腐蚀产物拉曼光谱再钝化
Keywords:
construction material reinforced concrete carbonation electrochemical realkalization treatment corrosion products Raman spectroscopy repassivation
分类号:
TU 503
DOI:
10.3724/SP.J.1249.2017.01075
文献标志码:
A
摘要:
利用拉曼光谱技术,实时检测混凝土/钢筋界面腐蚀产物的成分. 通过比较人工加速碳化处理、强加阳极电流加速腐蚀和再碱化处理前后混凝土/钢筋界面腐蚀产物的变化,研究电化学再碱化技术的再钝化机理.结果表明,施加阳极电流可以加快碳化混凝土中钢筋的腐蚀速度,其腐蚀产物主要成分为绿锈;电化学再碱化处理过程中,绿锈先是被还原为Fe(OH)2,同时生成氧化物Fe3O4;再碱化处理结束180 d后,Fe(OH)2被氧化成δ-FeOOH,Fe3O4转化成 γ-Fe2O3,但一旦通入阳极电流,经过再碱化处理的混凝土内的混凝土/钢筋界面重新生成绿锈,而强加阳极电流并不能加快非碳化混凝土中钢筋的腐蚀速度.研究表明,电化学再碱化技术能够在一定程度上增加混凝土的碱性,降低钢筋的腐蚀活性,但是钢筋不会被再钝化.
Abstract:
A real time Raman spectroscopy analysis is used to investigate the composition of corrosion products on concrete/steel interface. The repassivation mechanism of electrochemical realkalization is analyzed by comparing the evolutions of the corrosion products on concrete/steel interface before and after three types of treatment including the artificial carbonation, the corrosion acceleration by an anodic impressed current, and after the realkalization. An imposed anodic current can fasten the corrosion of steel rebars with green rust as the main corrosion products. During the realkalization treatment, the green rust is reduced into brucite (Fe(OH)2) and converted into magnetite (Fe3O4). One hundred eighty days after realkalization treatment, the brucite is oxydized to ferroxyhite δ-FeOOH and the magnetite is converted to maghemite γ-Fe2O3. Nevertheless once an anodic current is imposed on the reakalized samples, green rust can be detected again on concrete/steel interface. Any attempt to provoke a corrosion with an anodic impressed current on the steel rebars embedded in uncarbonated concrete is unsuccessful. These results indicate that the realkalization treatment can increase the alkalinity of concrete and decrease the corrosion activity of steel rebars, however, the steel rebars are not repassivated by this treatment.

参考文献/References:

[1] Yeih W, Chang J J.A study on the efficiency of electrochemical realkalisation of carbonated concrete[J].Construction and Building Materials, 2005, 19:516-524.
[2] Gonzalez J A, Cobo A, Gonzalez M N, et al.On the effectiveness of realkalisation as a rehabilitation method for corroded reinforced concrete structures[J].Materials and Corrosion, 2000, 51:97-103.
[3] 童芸芸, Bouteiller V, Matie-Victoire E,等.外加电源式再碱化处理的耐久性探究[J].浙江大学学报工学版,2011, 45(9):1664-1671.
Tong Yunyun, Bouteiller V, Matie-Victoire E, et al.Durability investigation of realkalization treatment using impressed current[J]. Journal of Zhejiang University Engineering Science, 2011, 45(9):1664-1671.(in Chinese)
[4] Tong Yunyun, Bouteiller V, Matie-Victoire E , et al. Efficiency investigations of electrochemical realkalisation treatment applied to carbonated reinforced concrete: sacrificial anode process[J].Cement and Concrete Research, 2012, 42: 84-94.
[5] 李天艳,周华新.碳化混凝土电化学再碱化技术及其性能劣化规律分析[J].混凝土与水泥制品, 2011, 8:16-19.
Li Tianyan, Zhou Huaxin. The electrochemical realkalization technology for carbonated concrete and its performance deterioration analysis[J]. China Concerete and Cement Products, 2011, 8:16-19.(in Chinese)
[6] 蒋正武, 杨凯飞, 潘微旺.碳化混凝土电化学再碱化效果研究[J].建筑材料学报, 2012, 15(1):17-21.
Jiang Zhengwu, Yang Kaifei, Pan Weiwang. Study on effectiveness of electrochemical realkalization for carbonated concrete[J]. Journal of Building Materials, 2012, 15(1):17-21.(in Chinese)
[7] 王昆, 屈文俊, 张俊喜, 等.再碱化钢筋砂浆试件再碳化后的电化学性能[J].同济大学学报自然科学版, 2012, 40(7):1058-1063.
Wang Kun, Qu Wenjun, Zhang Junxi, et al. Electro-chemical study on re-alkalized steel-mortar after re-carbonation[J]. Journal of Tongji University Natural Science, 2012, 40(7):1058-1063.(in Chinese)
[8] Castellote M, Llorente I, Andrade C, et al.Neutron diffraction as a tool to monitor the establishment of the electro-osmotic flux during realkalisation of carbonated concrete[J].Physica B: Condensed Matter,2006,385/386(1): 526-528.
[9] 何积铨,王谊梅.碳化混凝土再碱化的研究[J].腐蚀科学与防护技术, 2008,20(4):286-288.
He Jiquan, Wang Yimei. A study on realkalization technique for carbonated concrete[J]. Corrosion Science and Protection Technology, 2008, 20(4):286-288.(in Chinese)
[10] 蒋俊, 张俊喜, 鲁进亮, 等.钢筋在再碱化过程中的电化学行为研究[J].化学学报, 2011,69(20):2347-2351.
Jiang Jun, Zhang Junxi, Lu Jinliang, et al. Electrochemical behavior of the rebar during re-alkalization treatment[J]. Acta Chimica Sinica, 2011,69(20):2347-2351.(in Chinese)
[11] 王昆, 屈文俊, 李沛豪, 等.再碱化后的钢筋混凝土长期电化学研究[J].同济大学学报自然科学版, 2012,40(3):353-360.
Wang Kun, Qu Wenjun, Li Peihao, et al. A Long-term electrochemical study on carbonated reinforced concrete after realkalisation[J]. Journal of TongJi University Natural Science, 2012,40(3):353-360.(in Chinese)
[12] 鲁进亮, 张俊喜, 张羿,等.钢筋表面氧化层的阴极极化还原过程分析[J].建筑材料学报, 2013, 16(5):770-776.
Lu Jinliang, Zhang Junxi, Zhang Yi, et al. Reduction process of oxide layer on steel surface under cathodic polarization[J]. Journal of Building Materials, 2013, 16(5):770-776.(in Chinese)
[13] 金伟良, 郭柱, 许晨.电化学修复后钢筋极化状态分析[J].中国腐蚀与防护学报, 2013, 33(1):75-80.
Jin Weiliang, Guo Zhu, Xu Chen. Polarization analysis of reinforced steel after electrochemical repair[J]. Journal of Chinese Society for Corrosion and Protection, 2013, 33(1):75-80.(in Chinese)
[14] Andrade C, Keddam M, Novoa X R.Electrochemical behaviour of steel bars in concrete: influence of environmental factors and cement chemistry[J].Electrochimica Acta, 2001, 46:3905-3912.
[15] Huet B, L’ Hostis V, Miserque F,et al.Electrochemical behaviour of mild steel in concrete: influence of pH and carbonate content of concrete pore solution[J].Electrochimica Acta, 2005, 51:172-180.
[16] 储炜, 史苑芗, 魏宝明, 等.模拟混凝土孔溶液中钢筋钝化膜的光电化学方法研究[J].电化学,1995,3:291-297.
Chu Wei, Shi Yuanxiang, Wei Baoming, et al. The photoelectrochemical studies of passive films on rebar electrodes in simulated cement pore solution[J]. Journal of Electrochemistry, 1995,3:291-297.(in Chinese)
[17] 张俊喜, 杨吉, 张铃松,等.碳化混凝土再碱化过程中钢筋在Ca(OH)2溶液中的电极过程[J].腐蚀与防护,2008, 29(9):507-511.
Zhang Junxi, Yang Ji, Zhang Lingsong, et al. Polarization process of steel rebars in carbonated concrete in Ca(OH)2 solution during re-alkalization[J]. Corrosion & Protection, 2008, 29(9):507-511.(in Chinese)
[18] Care S, Raharinaivo A.Influence of impressed current on the initiation of damage in reinforced mortar due to corrosion of embedded steel[J].Cement and Concrete Research, 2007, 37:1598-1612.
[19] FD CEN/TS 14038-1 Electrochemical realkalisation and chloride extraction treatments for reinforced concrete: realkalisation[S].
[20] Boucherit N, Hugot-Le Goff A, et al.A study of carbon steels in basic pitting environments[J].Corrosion Science, 1991, 32:497-507.
[21] Sumoondur A, Shaw S, Ahmed I, et al.Green rust as a precursor for magnetite: an in situ synchrotron based study[J].Mineralogical Magazine, 2008, 72(1):201-204.
[22] Faria D L A, Venncio Silva S, Oliveira M T.Raman microspectroscopy of some iron oxides and oxyhydroxides[J].Raman Spectroscopy, 1997, 28:873.
[23] Raharinavo A, Arliguie G,Chaussadent T , et al.La corrosion et la protection des aciers dans le béton[M].Paris, France: Presses de l’école nationale des Ponts et chaussées, 1998.
Raharinavo A, Arliguie G,Chaussadent T , et al. Corrosion and protection of steel rebars in conrete[M].Paris, France: Presses de l’école nationale des Ponts et chaussées, 1998.(in French)
[24] Refait P, Benali O, Abdelmoula M, et al.The formation of ferric green rust and ferrihydrite by fast oxidation processes of the iron(II-III) hydroxychloride green rust[J].Corrosion Science, 2003, 45:2435-2449.
[25] 陈英, 吴德礼, 张亚雷,等.绿锈的结构特征与反应活性[J].化工学报, 2014,65(6):1952-1960.
Chen Ying, Wu Deli, Zhang Yalei, et al. Structural characteristics and reactivity of green rust[J]. CIESC Journal, 2014,65(6):1952-1960.(in Chinese)

相似文献/References:

[1]张亚芳,陈江平.不同掺量玻璃纤维增强水泥细观数值研究[J].深圳大学学报理工版,2010,27(1):103.
 ZHANG Ya-fang and CHEN Jiang-ping.Numerical study on glass fiber reinforced cement with different incorporation rates[J].Journal of Shenzhen University Science and Engineering,2010,27(1):103.
[2]周海俊,米红雨,谭也平.锈蚀-疲劳作用下的砼梁桥失效概率分析[J].深圳大学学报理工版,2010,27(1):109.
 ZHOU Hai-jun,MI Hong-yu,and TAN Ye-ping.Failure probability analysis of reinforced concrete bridges under coupled corrosion fatigue effects[J].Journal of Shenzhen University Science and Engineering,2010,27(1):109.
[3]管民生,韩大建,杜宏彪,等.钢筋混凝土框架结构的抗震性能指标研究[J].深圳大学学报理工版,2011,28(No.3(189-282)):200.
 GUAN Min-sheng,HAN Da-jian,DU Hong-biao,et al.A new seismic performance index for reinforced concrete frame structures[J].Journal of Shenzhen University Science and Engineering,2011,28(1):200.
[4]刘贤淼,江泽慧,费本华.玻璃纤维布增强造纸脱墨污泥纤维板性能研究[J].深圳大学学报理工版,2012,29(No.4(283-376)):371.[doi:10.3724/SP.J.1249.2012.04371]
 LIU Xian-miao,JIANG Ze-hui,and FEI Ben-hua.Paper deinking sludge fiberboard reinforced by fiberglass fabric[J].Journal of Shenzhen University Science and Engineering,2012,29(1):371.[doi:10.3724/SP.J.1249.2012.04371]
[5]付晔,李庆华,徐世烺.高温后纳米改性水泥基材料的残余抗折强度[J].深圳大学学报理工版,2014,31(2):187.[doi:10.3724/SP.J.1249.2014.02187]
 Fu Ye,Li Qinghua,and Xu Shilang.The effects of high temperature on flexural strengths of high performance nano-modified cementitious composites[J].Journal of Shenzhen University Science and Engineering,2014,31(1):187.[doi:10.3724/SP.J.1249.2014.02187]
[6]彭家惠,刘先锋,张建新,等.磷酸盐对α半水脱硫石膏凝结硬化的作用机理[J].深圳大学学报理工版,2014,31(4):388.[doi:10.3724/SP.J.1249.2014.04388]
 Peng Jiahui,Liu Xianfeng,Zhang Jianxin,et al.Mechanisms of phosphate on the hydration and hardening of α-hemihydrate desulfurization gypsum[J].Journal of Shenzhen University Science and Engineering,2014,31(1):388.[doi:10.3724/SP.J.1249.2014.04388]
[7]倪卓,邢锋,石开勇,等.微胶囊对水泥自修复复合材料微观结构的影响[J].深圳大学学报理工版,2015,32(1):68.[doi:10.3724/SP.J.1249.2015.01068]
 Ni Zhuo,Xing Feng,Shi Kaiyong,et al.Influence of microcapsule on microcosmic structure of self-healing cementitious composite[J].Journal of Shenzhen University Science and Engineering,2015,32(1):68.[doi:10.3724/SP.J.1249.2015.01068]
[8]刘昱清,董鹏,滕晓娟,等.基于X-ray μCT技术的钢筋锈胀特征分析[J].深圳大学学报理工版,2017,34(6):618.[doi:10.3724/SP.J.1249.2017.06618]
 Liu Yuqing,Dong Peng,Teng Xiaojuan,et al.Characterization of corrosion expansion feature of steel bar by means of X-ray μCT[J].Journal of Shenzhen University Science and Engineering,2017,34(1):618.[doi:10.3724/SP.J.1249.2017.06618]
[9]丁铸,孙晨,戴梦希.磷酸盐水泥砂浆作为锚固胶的性能研究[J].深圳大学学报理工版,2018,35(2):132.[doi:10.3724/SP.J.1249.2018.02132]
 DING Zhu,SUN Chen,and DAI Mengxi.Properties of phosphate cement mortar as an anchorage adhesive[J].Journal of Shenzhen University Science and Engineering,2018,35(1):132.[doi:10.3724/SP.J.1249.2018.02132]
[10]刘斌清,仵江涛,陈华鑫,等.多聚磷酸改性沥青的路用性能及机理分析[J].深圳大学学报理工版,2018,35(3):292.[doi:10.3724/SP.J.1249.2018.03292]
 LIU Binqing,WU Jiangtao,et al.Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J].Journal of Shenzhen University Science and Engineering,2018,35(1):292.[doi:10.3724/SP.J.1249.2018.03292]
[11]洪舒贤,郑帆,史桂昀,等.钢筋通电锈蚀过程电流有效性分析[J].深圳大学学报理工版,2019,36(1):94.[doi:10.3724/SP.J.1249.2019.01094]
 HONG Shuxian,ZHENG Fan,SHI Guiyun,et al.Investigation on current efficiency for current accelerated corrosion of reinforcing steel[J].Journal of Shenzhen University Science and Engineering,2019,36(1):94.[doi:10.3724/SP.J.1249.2019.01094]

备注/Memo

备注/Memo:
Received:2016-10-14;Accepted:2016-12-10
Foundation:National Natural Science Foundation of China(51408546);Natural Science Foundation of Zhejiang Province(LQ14E080008); Technology Project for Cultural Relics Preservation of Zhejiang Province(2015018)
Corresponding author:Associate professor Tong Yunyun.E-mail: 112013@zust.edu.cn
Citation:Tong Yunyun, Ye Liang, Ma Chao. Real time analysis on repassivation mechanism of steel rebar corrosion products[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(1): 75-81.(in Chinese)
基金项目:国家自然科学基金资助项目(51408546);浙江省自然科学基金资助项目(LQ14E080008);浙江省文物科技保护资助项目(2015018)
作者简介:童芸芸(1978—),女,浙江科技学院副教授、博士. 研究方向:钢筋混凝土的耐久性.E-mail:112013@zust.edu.cn
引文:童芸芸,叶良,马超.钢筋腐蚀产物实时检测的再钝化机理分析[J]. 深圳大学学报理工版,2017,34(1):75-81.
更新日期/Last Update: 2016-12-30