[1]李云亭,张明江,刘毅,等.动态噪声差分算法实现拉曼测温仪高精度检测[J].深圳大学学报理工版,2017,34(1):20-26.[doi:10.3724/SP.J.1249.2017.01020]
 Li Yunting,Zhang Mingjiang,et al.High precision measurement for Raman distributed temperature sensor by dynamic noise difference algorithm[J].Journal of Shenzhen University Science and Engineering,2017,34(1):20-26.[doi:10.3724/SP.J.1249.2017.01020]
点击复制

动态噪声差分算法实现拉曼测温仪高精度检测()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第34卷
期数:
2017年第1期
页码:
20-26
栏目:
光电工程
出版日期:
2017-01-09

文章信息/Info

Title:
High precision measurement for Raman distributed temperature sensor by dynamic noise difference algorithm
文章编号:
201701004
作者:
李云亭12张明江12刘毅12张建忠12
1)太原理工大学新型传感器与智能控制教育部与山西省重点实验室,山西太原 030024
2)太原理工大学物理与光电工程学院,光电工程研究所,山西太原 030024
Author(s):
Li Yunting1 2 Zhang Mingjiang1 2 Liu Yi1 2 and Zhang Jianzhong1 2
1) Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R.China
2) College of Physics and Optoelectronics, Institute of Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R.China
关键词:
非线性光学拉曼散射分布式光纤温度传感光接收机动态噪声差分算法拉曼自解调
Keywords:
non-linear optics Raman scattering distributed optical fiber temperature sensor optical receiver dynamic noise difference algorithm Raman self-demodulation
分类号:
TN 29; TP 212.14
DOI:
10.3724/SP.J.1249.2017.01020
文献标志码:
A
摘要:
传统分布式光纤传感系统采用固定噪声基底计算散射光强度.但在分布式拉曼测温系统中,由于雪崩光电二极管(avalanche photo diode,APD)光接收机工作时的温度和偏压等因素会导致基底微小改变;而由于拉曼散射光远弱于瑞利散射光,在长距离的温度解调时这个微小的改变对解调结果的影响尤为明显.为解决此问题,提出动态噪声差分算法的方法,即将菲涅尔反射峰后的基底噪声的平均值作为此散射光的动态噪声基底,实现对APD光接收机的噪声基底的动态测量.在拉曼自解调实验系统中,发现由于接收机工作时的温度和偏压等因素的微小改变导致光接收机的噪声基底存在6.62 mV的波动,且噪声基底波动导致测温精度随距离的上升而恶化;采用动态噪声基底的方法可消除噪声基底波动对测温结果的影响,将有效传感距离从3.0 km延长至11.5 km,同时在10.4 km处实现了0.61 ℃的测温不确定度和1.58 ℃的测温精确度,可为分布式拉曼传感长距离测量提供参考.
Abstract:
Fixed ground noise is always used to calculate the intensity of the backscattering in traditional distributed optical fiber sensing system. In the Raman distributed temperature sensor (RDTS), the ground noise will be influenced by the change of the working temperature and bias voltage of optical receiver based on avalanche photo diode (APD). Raman scattering light is the weakest one among three kinds of backscattering light. This means the tiny change of the ground noise will affect the results of temperature measurement, especially in long distance sensing system. In order to solve this problem, we propose a method of dynamic noise difference algorithm for RDTS. By using the average value of dark current noise which is behind Fresnel reflection as the dynamic ground noise, we dynamically obtain the actual ground noise of the optical receiver based on APD. In self-demodulation RDTS, the ground noise of optical receiver is about 6.62 mV. And as the distance increases, the temperature accuracy becomes worse and worse due to the ground noise fluctuation. When the influence of the ground noise fluctuation on the measure results is eliminated by dynamic noise difference algorithm, the effective sensing distance increases from 3 km to 11.5 km. And the uncertainty of 0.61 ℃ and the temperature accuracy of 1.58 ℃ are obtained over a 10.4 km sensing fiber. A RDTS with a long sensing distance is achieved by this method.

参考文献/References:

[1] 郑晴蝶.基于51单片机的PT100铂热电阻在配网温度监控中的应用[J].中国高新技术企业,2016(31): 37-38.
Zheng Qingdie. Platinum thermal resistance based on 51 single chip microcomputer applied in temperature monitoring of distribution network[J]. China High Tech Enterprises, 2016(31): 37-38.(in chinese)
[2] 周奎,孟凡钦,朱美春.双面受火钢骨-方钢管混凝土柱的温度场分析[J].深圳大学学报理工版, 2014,31(4):402-409.
Zhou Kui, Meng Fanqin, Zhu Meichun. Analysis of temperature distribution in square steel tube filled with steel reinforced concrete under two-side fire[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(4): 402-409. (in Chinese)
[3] 蒋萧泽,王艳新,朱莉,等.基于单片机的多点无线温度监控系统[J].电子测试,2016(13):25.
Jiang Xiaoze, Wang Yanxin, Zhu Li, et al. Multi-point wireless temperature monitoring system based on single chip microcomputer[J]. Electronic Test, 2016(13):25.(in Chinese)
[4] 马晓川,周振安,刘爱春,等.高灵敏度稳定光纤光栅温度传感器的研究[J].光电子·激光,2013,24(7):1245-1250.
Ma Xiaochuan, Zhou zhen’an, Liu Aichun, et al. A high-sensitivity and stable fiber bragg gating temperature sensor[J]. Journal of Optoelectronics·Laser, 2013, 24(7): 1245-1250.(in Chinese)
[5] 李学金,宋奎岩,洪学明,等.双空芯光子晶体光纤温度传感特性研究[J].深圳大学学报理工版,2010, 27(1):28-32.
Li Xuejin, Song Kuiyan, Hong Xueming, et al. Research on temperature characteristics of hollow dual-core liquid-filled photonic crystal fiber[J]. Journal of Shenzhen University Science and Engineering, 2010, 27(1): 28-32.(in Chinese)
[6] 杜志泉,倪锋,肖发新.光纤传感技术的发展与应用[J].光电技术应用,2014,29(6):7-12.
Du Zhiquan, Ni Feng, Xiao Faxin. Development and application of optical fiber sensing technology[J]. Electro-Optic Technology Application, 2014, 29(6): 7-12.(in Chinese)
[7] Dakin J P, Pratt D J, Bibby G W, et al. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector[J]. Electronics letters, 1985, 21(13): 569-570.
[8] Soto M A, Nannipieri T, Signorini A, et al. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding[J]. Optics Letters, 2011, 36(13): 2557-2559.
[9] Saxena M K, Raju S, Arya R, et al. Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals[J]. Measurement, 2014, 47(1): 345-355.
[10] Dyer S D, Tanner M G, Baek B, et al. Analysis of a distributed fiber-optic temperature sensor using single-photon detectors[J]. Optics Express, 2012, 20(4): 3456-3466.
[11] Hwang D, Yoon D J, Kwon I B, et al. Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-stokes Raman scattering[J]. Optics Express, 2010, 18(10): 9747-9754.
[12] Pandian C, Kasinathan M, Sosamma S, et al. Single-fiber grid for improved spatial resolution in distributed fiber optic sensor[J]. Optics Letters, 2010, 35(10): 1677-1679.
[13] Wang Jianfeng, Hu Chuanlong, Zhang Zaixuan, et al. Distributed optical fiber temperature sensor applied in underground coal gasification system[C]// Asia Communications and Photonics Conference and Exhibition.[S. l.]: Optical Society of America, 2010: 79900.
[14] Liu Yuan, Lei Tao, Sun Zhihui, et al. Application of distributed optical fiber temperature system in online monitoring and fault diagnosis of smart grid[C]// Asia-Pacific Power and Energy Engineering Conference.[S. l.]: IEEE, 2012: 1-4.
[15] Fernandez A F, Rodeghiero P, Brichard B, et al. Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2689-2694.
[16] 梅海阔,刘建国,刘大畅,等.高灵敏度APD光接收机系统的设计与实现[J].光通信技术,2016,40(8): 15-18.
Mei Haikuo, Liu Jianguo, Liu Dachang, et al. Design and realization of a high sensitivity APD optical receiver system[J]. Optical Communication Technology, 2016, 40(8): 15-18.(in Chinese)
[17] Sang Lei, Zhang Jie, Wang Xinqun. Research for thermal drift of APD gain in distributed temperature sensing system based on the Raman back-scattering[J]. Advanced Materials Research, 2012, 571: 716-720.
[18] 苏国彬,李铮.分布式光纤喇曼测温系统光接收机的动态范围及测温数据的修正[J].光子学报,2002,31(4):475-479.
Su Guobin, Li Zheng. The dynamic range evaluation of optical receiver in distributed fiber temperature sensor based on Raman back scatting and temperature correction[J]. Acta Photonica Sinica, 2002, 31(4): 475-479.(in Chinese)
[19] 许卫鹏,韩广源,杨世强,等.分布式拉曼测温系统中 APD 盖革模式控制[J].中国科技论文,2015(8):995-998.
Xu Weipeng, Han Guangyuan, Yang Shiqiang, et al. The controlling of InGaAs avalanche photodiode with Geiger mode in Raman distributed temperature sensing system[J]. China Sciencepaper, 2015, 10(8): 995-998.(in Chinese)
[20] 徐海峰,张在宣,王剑锋,等.25 km光纤温度传感器中背向拉曼散射的放大效应[C]// 全国第12次光纤通信暨第13届集成光学学术会议论文集.广东四会:[s.n.],2005:841-845.
Xu Haifeng, Zhang Zaixuan, Wang Jianfeng, et al. Raman amplification effect on backward Raman scattering in the 25 km fiber Raman sensor[C]// Proceedings of the 12th National Optical Fiber Communications and the 13th Conference on Integrated Optics. Guangdong Sihui:[s.n.], 2005: 841-845.(in Chinese)

相似文献/References:

[1]郑国梁,欧阳征标,徐世祥.吸收对准相位匹配线性电光效应的影响[J].深圳大学学报理工版,2010,27(2):152.
 ZHENG Guo-liang,OUYANG Zheng-biao,and XU Shi-xiang.The effect of absorption on the quasi-phase-matched linear electro-optic effect[J].Journal of Shenzhen University Science and Engineering,2010,27(1):152.
[2]夏林中,苏红,管明祥,等.温度调谐的周期极化掺氧化镁铌酸锂振荡器[J].深圳大学学报理工版,2011,28(No.5(377-470)):405.
 XIA Lin-zhong,SU Hong,GUAN Ming-xiang,et al.Temperature tunable optical parametric oscillator based on MgO-doped PPLN[J].Journal of Shenzhen University Science and Engineering,2011,28(1):405.
[3]倪洁蕾,程亚.飞秒激光成丝若干新效应研究进展[J].深圳大学学报理工版,2014,31(1):1.[doi:10.3724/SP.J.1249.2014.01001]
 Ni Jielei and Cheng Ya.Several new phenomena in femtosecond laser filamentation[J].Journal of Shenzhen University Science and Engineering,2014,31(1):1.[doi:10.3724/SP.J.1249.2014.01001]
[4]屈军乐,陈丹妮,杨建军,等.二次谐波成像及其在生物医学中的应用[J].深圳大学学报理工版,2006,23(1):1.
 QU Jun-le,CHEN Dan-ni,YANG Jian-jun,et al. Second harmonic generation imaging and its applications in biomedicine[J].Journal of Shenzhen University Science and Engineering,2006,23(1):1.
[5]庾名槐,宋军,屈军乐,等.局域表面等离子效应的新应用[J].深圳大学学报理工版,2015,32(6):577.[doi:10.3724/SP.J.1249.2015.06577]
 Yu Minghuai,Song Jun,et al.New applications of local surface plasmonic resonance[J].Journal of Shenzhen University Science and Engineering,2015,32(1):577.[doi:10.3724/SP.J.1249.2015.06577]
[6]郝中华,刘劲松.高斯光束在光伏光折变晶体中的孤波演化[J].深圳大学学报理工版,2001,18(1):15.
 HAO Zhong-hua,LIU Jin-song.Solitary Evolution of Gaussian Beam in Photovoltaic-photorefractive Crystal[J].Journal of Shenzhen University Science and Engineering,2001,18(1):15.
[7]龙井华,阮双琛,巨养锋,等.新型超短光脉冲测量技术[J].深圳大学学报理工版,2001,18(4):46.
 LONG Jing-hua,RUAN Shuang-chen,JU Yang-feng and Zhu Qin.New Techniques for Measuring the Ultrashort Optical Pulses[J].Journal of Shenzhen University Science and Engineering,2001,18(1):46.
[8]杨帅军,张建忠,刘毅,等.面向混沌激光器的高精度温控与驱动电路设计[J].深圳大学学报理工版,2018,35(5):495.[doi:10.3724/SP.J.1249.2018.05495]
 YANG Shuaijun,ZHANG Jianzhong,LIU Yi,et al.Design of precise temperature controller and current driver for chaotic laser[J].Journal of Shenzhen University Science and Engineering,2018,35(1):495.[doi:10.3724/SP.J.1249.2018.05495]
[9]刘强,王琼,欧阳征标.基于混合微腔的高效率太赫兹波产生[J].深圳大学学报理工版,2019,36(2):140.[doi:10.3724/SP.J.1249.2019.02140]
 LIU Qiang,WANG Qiong,et al.Efficient terahertz wave generation based on hybrid micro-cavity[J].Journal of Shenzhen University Science and Engineering,2019,36(1):140.[doi:10.3724/SP.J.1249.2019.02140]
[10]李绍和,李九生,孙建忠.太赫兹频率编码器[J].深圳大学学报理工版,2019,36(2):162.[doi:10.3724/SP.J.1249.2019.02162]
 LI Shaohe,LI Jiusheng,and SUN Jianzhong.Terahertz frequency coding metasurface[J].Journal of Shenzhen University Science and Engineering,2019,36(1):162.[doi:10.3724/SP.J.1249.2019.02162]
[11]刘伟,刘双龙,陈丹妮,等.CARS显微成像系统的空间分辨率标定[J].深圳大学学报理工版,2017,34(3):272.[doi:10.3724/SP.J.1249.2017.03272]
 Liu Wei,Liu Shuanglong,Chen Danni,et al.Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy[J].Journal of Shenzhen University Science and Engineering,2017,34(1):272.[doi:10.3724/SP.J.1249.2017.03272]

备注/Memo

备注/Memo:
Received:2016-11-08;Accepted:2016-12-16
Foundation:National Natural Science Foundation of China (61377089); Key Science and Technology Research Project Based on Coal of Shanxi Province (MQ2014-09); Coal-Bed Methane Joint Research Fund of Shanxi Province (2015012005); Programs for Science and Technology Development of Shanxi Province (20140321003-1)
Corresponding author:Professor Zhang Mingjiang. E-mail: zhangmingjiang@tyut.edu.cn
Citation:Li Yungting, Zhang Mingjiang, Liu Yi, et al. High precision measurement for Raman distributed temperature sensor by dynamic noise difference algorithm[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(1): 20-26.(in Chinese)
基金项目:国家自然科学基金资助项目(61377089);山西省煤基重点科技攻关资助项目(MQ2014-09);山西省煤层气联合研究基金资助项目(2015012005);山西省科技攻关资助项目(20140321003-1)
作者简介:李云亭( 1992—) ,男,太原理工大学硕士研究生.研究方向:分布式光纤传感.E-mail: tyutlyt@163.com
引文:李云亭,张明江,刘毅,等.动态噪声差分算法实现拉曼测温仪高精度检测[J]. 深圳大学学报理工版,2017,34(1):20-26.
更新日期/Last Update: 2016-12-30