[1]许陶,罗睿.物质粒子代数目NG的起源[J].深圳大学学报理工版,2016,33(6):620-626.[doi:10.3724/SP.J.1249.2016.06613]
 Xu Tao and Luo Rui.Investigation of the number NG of matter particle generations[J].Journal of Shenzhen University Science and Engineering,2016,33(6):620-626.[doi:10.3724/SP.J.1249.2016.06613]
点击复制

物质粒子代数目NG的起源()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第33卷
期数:
2016年第6期
页码:
620-626
栏目:
物理与应用物理
出版日期:
2016-11-20

文章信息/Info

Title:
Investigation of the number NG of matter particle generations
文章编号:
201606010
作者:
许陶罗睿
浙江大学物理学系,浙江杭州 310027
Author(s):
Xu Tao and Luo Rui
Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R.China
关键词:
物理学代数目规范反常消除标准模型超对称大统一理论
Keywords:
physics generation number gauge anomaly cancellation standard model supersymmetry grand unification theory
分类号:
O 412.3
DOI:
10.3724/SP.J.1249.2016.06613
文献标志码:
A
摘要:
在基本粒子物理的标准模型中,代数目的起源一直是悬而未决的问题.概述标准模型中3代费米子的确定以及代的物理背景,并讨论了利用规范反常消除条件在超对称大统一框架下探究代数目的可能性.超对称模型中的代数目依赖于大统一框架中的群结构.
Abstract:
In the standard model of particle physics, there are three generations of matter particles with identical quantum numbers but distinct masses. However,neither the answer to the question of whether there are only three generations of matter particles nor the origin of generation number is clear. We introduce the determination of three generations in the standard model and its physical background, and discuss the possibility of investigating the generation number in the supersymmetric grand unification framework. The generation number in the supersymmetric models depends on the grand unification group structure.

参考文献/References:

[1] Cabibbo N. Unitary symmetry and leptonic decays[J]. Physical Review Letters, 1963,10(12): 531-533.
[2] Christenson J H, Cronin J W, Fitch V L,et al. Evidence for the 2π decay of the K02 meson[J]. Physical Review Letters, 1964,13(4): 138-140.
[3] Kobayashi M, Maskawa T. CP violation in the renormalizabletheory of weak interaction[J]. Progress of Theoretical Physics, 1973, 49(2): 652-657.
[4] Glashow S L, Iliopoulos J, Maiani L. Weak interactions with lepton-hadron symmetry[J]. Physical Review D: Covering Particles, Fields, Gravitation, and Cosmology, 1970, 2(7): 1285-1292.
[5] Aubert J J, Becker U, Biggs P J, et al. Experimental observation of a heavy particle J[J]. Physical Review Letters, 1974, 33(23):1404-1406.
[6] Augustin J E, Boyarski A, Breidenbach M, et al. Discovery of a narrow resonance in e+e- annihilation[J]. Physical Review Letters, 1974, 33(23): 1406-1408.
[7] Goldhaber G, Pierre F, Abrams G S, et al. Observation in e+e- annihilation of a narrow state at 1 865 MeV/c2 decaying to Kπ and Kπππ[J]. Physical Review Letters, 1976,37(5): 225-259.
[8] Herb S W, Hom D C, Lederman L M, et al. Observation of a dimuonresonance at 9.5 GeV in 400-GeV proton-nucleus collisions[J]. Physical Review Letters, 1977,39(5): 252-255.
[9] Abe F, Akimoto H, Akopian A, et al. Observation of top quark production in p collisions detector at fermilab[J]. Physical Review Letters, 1995, 74(5): 2626-2631.
[10] Geng C Q, Marshak R E. Uniqueness of quark and lepton representations in the standard model from the anomalies viewpoint[J].Physical Review D: Particles and Fields, 1989, 39(2): 693-696.
[11] Mohapatra R N, Antusch S, Babu K S, et al. Theory of neutrino: a white paper[J]. Reports on Progress in Physics, 2007, 70(11): 1757-1867.
[12] Yanagida T. Horizontal symmetry and masses of neutrinos[C]// Proceedings in Workshop on the Unified Theories and the Baryon Number in the Universe. Tsukuba, Japan:[s. n.], 1979, 7902131: 95-99.
[13] Yanagida T. Horizontal symmetry and masses of neutrinos[J]. Progress of Theoretical Physics , 1980, 64:1103-1105.
[14] Mohapatra R N, Smirnov A Y. Neutrino mass and new physics[J]. Annual Review of Nuclear and Particle Science, 2006, 53(1): 44-82.
[15] Martin S P. A supersymmetry primer[EB/OL].(1997-09-16). http://arxiv.org/abs/hep-ph/9709356.
[16] Nelson A E, Seiberg N. R symmetry breaking versus supersymmetry breaking[J]. Nuclear Physics B, 1993, 416(1): 46-62.
[17] Weinberg S. The quantum theory of fields[M]. 影印版. 3版. 北京: 世界图书出版公司,2004: 183-184.
Weinberg S. The quantum theory of fields[M]. Facsimile reprint ed. 3rd ed. Beijing: World Publishing Corporation, 2004: 183-184.(in Chinese)
[18] Evans J L, Masahiro I, Kehayias J, et al. Nonanomalous discrete R symmetry decrees three generations[J]. Physical Review Letters, 2012, 109(18): 181801.
[19] Dine M, Kehayias J. Discrete R symmetries and low energy supersymmetry[J]. Physical Review D: Particles and Fields, 2010, 82(5): 055014.
[20] Ibáez L E. More about discrete gauge anomalies[J]. Nuclear Physics B, 1993, 398(2): 301-318.
[21] Harigaya K, Masahiro I, Schmitz K, et al. The peccei-quinn symmetry from a gauged discrete R symmetry[J]. Physical Review D: Particles and Fields, 2013, 88(7): 075022.
[22] Babu K S, Gogoladze I, Wang K. Natural R-parity, μ-term, and fermion mass hierarchy from discrete gauge symmetries[J]. Nuclear Physics B, 2003, 660(1/2): 322-342.
[23] Lee H M, Raby S, Ratz M, et al. Discrete R symmetries for the MSSM and its singlet extensions[J]. Nuclear Physics B, 2011, 850(1): 1-30.
[24] Lee H M, Raby S, Ratz M, et al. A unique ZR4 symmetry for the MSSM[J]. Physics Letter B, 2011, 694(4): 491-496.
[25] Paraskevas M, Tamvakis. Discrete R symmetries in the MSSM and its extensions[J]. Physical Review D: Particles and Fields, 2012, 86: 015009.

备注/Memo

备注/Memo:
Received:2015-12-23;Revised:2016-08-31;Accepted:2016-09-05
Foundation:Natinoal Natural Science Foundation of China (11275168)
Corresponding author:Doctoral candidate Xu Tao. E-mail: taoxu@zju.edu.cn
Citation:Xu Tao, Luo Rui. Investigation of the number NG of matter particle generations[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(6): 613-619.(in Chinese)
基金项目:国家自然科学基金资助项目(11275168)
作者简介:许陶(1991—),男,浙江大学博士研究生.研究方向:高能物理.E-mail: taoxu@zju.edu.cn
引文:许陶,罗睿.物质粒子代数目NG的起源探讨[J]. 深圳大学学报理工版,2016,33(6):613-619.
更新日期/Last Update: 2016-10-31