[1]李娜,丰建文,赵毅.具有马氏跳拓扑复杂网络的有限时间同步[J].深圳大学学报理工版,2016,33(4):359-366.[doi:10.3724/SP.J.1249.2016.04359]
 Li Na,Feng Jianwen,and Zhao Yi.Finite-time synchronization of Markovian jump complex networks[J].Journal of Shenzhen University Science and Engineering,2016,33(4):359-366.[doi:10.3724/SP.J.1249.2016.04359]
点击复制

具有马氏跳拓扑复杂网络的有限时间同步()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第33卷
期数:
2016年第4期
页码:
359-366
栏目:
电子与信息科学
出版日期:
2016-07-12

文章信息/Info

Title:
Finite-time synchronization of Markovian jump complex networks
文章编号:
201604004
作者:
李娜丰建文赵毅
深圳大学数学与统计学院,广东深圳 518060
Author(s):
Li Na Feng Jianwen and Zhao Yi
College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
复杂网络马氏跳时滞转移率有限时间同步控制器
Keywords:
complex networks Markovian jump time delay transition rate finite-time synchronization controller
分类号:
O 193
DOI:
10.3724/SP.J.1249.2016.04359
文献标志码:
A
摘要:
考虑一类带有部分未知转移率,以及含有内部时滞和耦合时滞的马氏跳复杂网络的有限时间同步问题.通过构造适当的随机Lyapunov-Krasovskii函数,利用有限时间稳定定理以及矩阵不等式得到保证该网络在一个确定时间内达到同步的判据.有限时间同步意味着可获得最佳收敛时间及较好的鲁棒性和抗干扰性.数值模拟验证了所得理论结果的有效性.
Abstract:
A finite-time synchronization issue on a class of Markovian jump complex networks with partially unknown transition rates and time delays, including internal delay and coupling delay, is studied. With finite-time stability theorem and matrix inequality, some sufficient criteria have been proposed to guarantee the synchronization during a setting time by constructing the suitable stochastic Lyapunov-Krasovskii function. Since finite-time synchronization suggests optimality in convergence time, better robustness and better disturbance rejection properties, the results are important. The validity and effectiveness of the theoretical result are verified with several numerical simulations.

参考文献/References:

[1] Boccaletti S,Latora V,Moreno Y,et al.Complex networks:structure and dynamics[J].Physics Reports,2006,424(4):175-308.
[2] Pagani G A,Aiello M.The power grid as a complex  network:a survey[J].Physica,2013,392(11):2688-2700.
[3] Tang Jinjun,Wang Yinhai,Liu Fang.Characterizing  traffic time series based on complex network theory[J].Physica,2013,392(18):4192-4201.
[4] Wang Shuguo, Yao Hongxing, Bian Qiuxiang. Synchronization in complex networks with time-varying delays dynamical nodes via pinning control[J].Mathematical Problems in Engineering,2012,2012(1): 654742.
[5] Sheng Li,Yang Huizhong.Exponential synchronization of a class of neural networks with mixed time-varying delays and impulsive effects[J].Neurocomputing,2008,71(16): 3666-3674.
[6] Wang Zhanshan,Zhang Huaguang.Synchronization stability in complex interconnected neural networks with non-symmetric coupling[J].Neurocomputing,2013,108(5): 84-92.
[7] Wu Xiaoqun,Zheng Weixing,Zhou Jin.Generalized outer synchronization between complex dynamical networks[J].Chaos,2009,19(1):193-204.
[8] Li Dong,Cao Jinde.Finite-time synchronization of coupled networks with one single time-varying delay coupling[J].Neurocomputing,2015,166(31):265-270.
[9] Huang Junjian,Li Chuandong,Huang Tingwen,et al.Finite-time lag synchronization of delayed neural networks[J].Neurocomputing,2014,139:145-149.
[10] Bhat S P,Bernstein D S.Finite-time stability of continuous autonomous systems,SIAM[J].Control Optim,2000,38(3):751-766.
[11] Li Shihua,Du Haibo,Lin Xiangze.Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics[J].Automatica,2011,47(8):1706-1712.
[12] Du Haibo,Li Shihua,Qian Chunjiang.Finite-time  attitude tracking control of spacecraft with application to attitude synchronization[J].IEEE Transactions on Automatic Control,2011,56(11):2711-2717.
[13] Yang Xinsong,Cao Jinde.Finite-time stochastic synchronization of complex networks[J].Applied Mathematical Modelling,2010,34(11):3631-3641.
[14] Yang Xinsong,Wu Zhiyou,Cao Jinde.Finite-time synchronization of complex networks with nonidentical discontinuous nodes[J].Nonlinear Dynamics,2013,73(4):2313-2327.
[15] Mei Jun,Jiang Minghui,Wang Jun.Finite-time structure identification and synchronization of drive-response systems with uncertain parameter[J].Communications in Nonlinear Science and Numerical Simulation,2013,18(4):999-1015.
[16] Fei Zhongyang,Gao Huijun,Zheng Weixing.New synchronization stability of complex networks with an interval time-varying coupling delay[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2009,56(6):499-503.
[17] Mei Jun,Jiang Minghui,Xu Wangming,et al.Finite-time synchronization control of complex dynamical networks with time delay[J].Communications in Nonlinear Science and Numerical Simulation,2013,18(9):2462-2478.
[18] Cui Wenxia,Sun Shaoyuan,Fang Jianan,et al.Finite-time synchronization of Markovian jump complex networks with partially unknown transition rates[J].Journal of the Franklin Institute,2014,351(5):2543-2561.
[19] Yang Xinsong,Cao Jinde,Lu Jianquan.Synchronization of Markovian coupled neural networks with nonidentical node-delays and random coupling strengths[J].IEEE Transactions on Neural Networks and Learning Systerms,2012,23(1):60-71.
[20] Zhang Wenbing,Fang Jianan,Tang Yang.Stochastic stability of Markovian jumping genetic regulatory networks with mixed time delays[J].Applied Mathematics Computation,2011,217(17):7210-7225.
[21] Hopfield J J.Neurons with graded response have collective computational properties like those of two state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America,1984,81(10):3088-3092.
[22] Xiong Junlin,Lam J,Gao Huijun,et al.On robust stabilization of Markovian jump systems with uncertain switching probabilities[J].Automatica,2005,41(5):897-903.
[23] Costa O L V,Val J B L,Geomel J C.Continuous time state feedback H2-control of Markovian jump linear system via convex analysis[J].Automatica,1999,35(2):259-268.
[24] Kalyanasundaram S,Chong E K P,Shroff N B.Markov decision processes with uncertain transition rates: sensitivity and max hyphen min control[J].Asian Journal of Control,2004,6(2):253-269.
[25] Gilli M.Strange attractors in delayed cellular neural networks[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1993,40(11):849-853.

相似文献/References:

[1]吴雪飞,徐晨.基于牵制控制的一类线性耦合复杂网络同步[J].深圳大学学报理工版,2011,28(No.5(377-470)):460.
 WU Xue-fei and XU Chen.The synchronization of a dynamic complex network with linear coupling[J].Journal of Shenzhen University Science and Engineering,2011,28(4):460.
[2]吴维扬,丰建文,赵毅.基于随机牵制控制的复杂网络均方簇同步[J].深圳大学学报理工版,2015,32(5):538.[doi:10.3724/SP.J.1249.2015.05538]
 Wu Weiyang,Feng Jianwen,and Zhao Yi.Mean square cluster synchronization of complex networks via random pinning control[J].Journal of Shenzhen University Science and Engineering,2015,32(4):538.[doi:10.3724/SP.J.1249.2015.05538]
[3]毛北行,王战伟.一类分数阶复杂网络系统的有限时间同步控制[J].深圳大学学报理工版,2016,33(1):96.[doi:10.3724/SP.J.1249.2016.01096]
 Mao Beixing and Wang Zhanwei.Finite-time synchronization control of a class of fractional-order complex network systems[J].Journal of Shenzhen University Science and Engineering,2016,33(4):96.[doi:10.3724/SP.J.1249.2016.01096]
[4]潘静静,王晓峰.复杂网络视角下的港口连通性建模及应用[J].深圳大学学报理工版,2017,34(5):544.[doi:10.3724/SP.J.1249.2017.05544]
 Pan Jingjing,and Wang Xiaofeng.Port connectivity model based on complex network and its application[J].Journal of Shenzhen University Science and Engineering,2017,34(4):544.[doi:10.3724/SP.J.1249.2017.05544]

备注/Memo

备注/Memo:
Received:2016-03-10;Accepted:2016-05-25
Foundation:National Natural Science Foundation of China (61273220, 61373087)
Corresponding author:Professor Feng Jianwen.E-mail: fengjw@szu.edu.cn
Citation:Li Na,Feng Jianwen,Zhao Yi.Finite-time synchronization of Markovian jump complex networks[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(4): 359-366.(in Chinese)
基金项目:国家自然科学基金资助项目(61273220,61373087)
作者简介:李娜(1990—),女,深圳大学硕士研究生.研究方向:微分动力学在复杂网络中的应用.E-mail:lina19900305@163.com
引文:李娜,丰建文,赵毅.具有马氏跳拓扑复杂网络的有限时间同步[J]. 深圳大学学报理工版,2016,33(4):359-366.
更新日期/Last Update: 2016-06-23