[1]洪盛熙,邓文基,刘军丰.类石墨烯材料中应力调制的量子泵浦效应[J].深圳大学学报理工版,2016,33(4):352-358.[doi:10.3724/SP.J.1249.2016.04352]
 Hong Shengxi,Deng Wenji,et al.Quantum pumping in strain modulated graphene-like materials[J].Journal of Shenzhen University Science and Engineering,2016,33(4):352-358.[doi:10.3724/SP.J.1249.2016.04352]
点击复制

类石墨烯材料中应力调制的量子泵浦效应()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第33卷
期数:
2016年第4期
页码:
352-358
栏目:
物理
出版日期:
2016-07-12

文章信息/Info

Title:
Quantum pumping in strain modulated graphene-like materials
文章编号:
201604003
作者:
洪盛熙12邓文基1刘军丰2
1) 华南理工大学物理与光电学院,广东广州 510641
2)南方科技大学物理系,广东深圳 518055
Author(s):
Hong Shengxi1 2 Deng Wenji1 and Liu Junfeng2
1) School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, Guangdong Province, P.R.China
2) Department of Physics, South University of Science and Technology of China, Shenzhen 518055, Guangdong Province, P.R.China
关键词:
凝聚态物理类石墨烯材料能谷流自旋流量子泵浦周期调制
Keywords:
condensed matter physics graphene-like material valley current spin current quantum pumping cyclic modulation
分类号:
O 469
DOI:
10.3724/SP.J.1249.2016.04352
文献标志码:
A
摘要:
通过对应力及电势垒的周期调制,在石墨烯及类石墨烯蜂窝格子材料中泵浦出能谷流.应力在能谷K和K′处诱导的符号相反的矢势,等效于加载K和K′能谷处的应力泵浦信号间有一个π相位差,导致纯能谷流的产生.当在含有自旋轨道耦合的类石墨烯蜂窝格子材料中存在一个交错子格子势时,经由自旋-能谷锁定相,泵浦出的纯能谷流可伴随着纯的自旋流.再引入一个交换场后,可通过泵浦得到电荷流、能谷极化流以及自旋极化流.
Abstract:
We propose a scheme for the pumping of bulk valley current in graphene and graphene-like honeycomb crystals by cyclic modulation of the strain and an electric potential barrier. The strain-induced opposite vector potentials at K and K′ valleys generate a π phase difference between the pumping signals of strain in two valleys, which leads to a pure valley current. In graphene-like honeycomb crystals with spin-orbit coupling, the pumped pure valley current can be accompanied by a pure spin current via the spin-valley locked phase in the presence of a staggered sublattice potential. The charge current, valley-polarized current, and spin-polarized current can also be pumped when an exchange field is applied.

参考文献/References:

[1] Castro Neto A H, Guinea F, Peres NMR, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109.
[2] Peres NMR. Colloquium: the transport properties of graphene: an introduction[J]. Reviews of Modern Physics, 2010, 82(3): 2673.
[3] Sarma D S, Adam S, Hwang EH, et al. Electronic transport in two-dimensional graphene[J]. Reviews of Modern Physics, 2011, 83(2): 407.
[4] Morpurgo A F, Guinea F. Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene[J]. Physical Review Letters, 2006, 97(19): 196804.
[5] Morozov S V, Novoselov K S, Katsnelson M I, et al. Strong suppression of weak localization in graphene[J]. Physical Review Letters, 2006, 97(1): 016801.
[6] Gorbachev R V, Tikhonenko F V, Mayorov A S, et al. Weak localization in Bilayer graphene[J]. Physical Review Letters, 2007, 98(17): 176805.
[7] Chen Jianhao, Cullen W G, Jang C, et al. Defect scattering in graphene[J]. Physical Review Letters, 2009, 102(23): 236805.
[8] Pesin D, MacDonald A H. Spintronics and pseudospintronics in graphene and topological insulators[J]. Nature Materials, 2012, 11(5): 409-416.
[9] Behnia K. Polarized light boosts valleytronics[J]. Nature Nanotech, 2012, 7: 488-489.
[10] Xiao Di, Yao Wang, Niu Qian. Valley-contrasting physics in graphene: magnetic moment and topological transport[J]. Physical Review Letters, 2007, 99(23): 236809.
[11] Rycerz A, Tworzydo J, Beenakker C W J. Valley filter and valley valve in graphene[J]. Nature Physics, 2007, 3: 172.
[12] Zhang Z Z, Chang Kai, Chan K S. Resonant tunneling through double-bended graphene nanoribbons[J]. Applied Physics Letters, 2008, 93: 062106.
[13] Wang Jing, Chan K S, Lin Zijing. Quantum pumping of valley current in strain engineered graphene barrier on strained graphene: a possible valley filter[J]. Physical Review B, 2010, 82(11): 115442.
[14] Zhai Feng, Ma Yanling, Zhang Yingtao. A valley-filtering switch based on strained graphene[J]. Journal of Physics: Condensed Matter, 2011, 23: 385302.
[15] Cao Zhenzhou, Cheng Yanfu, Li Guanqiang. Strain-controlled electron switch in graphene[J].Applied Physics Letters, 2012, 101: 253507.
[16] Gunlycke D, White C T. Graphene valley filter using a line defect[J]. Physical Review Letters, 2011, 106(13): 136806.
[17] Liu Yang, Song Juntao, Li Yuxian, et al. Controllable valley polarization using graphene multiple topological line defects[J]. Physical Review B, 2013, 87(19): 195445.
[18] Zhang Qingtian, Chan K S, Lin Zijing. Spin current generation by adiabatic pumping in monolayer graphene[J].Applied Physics Letters, 98: 032106.
[19] Zhang Qingtian, Lin Zijing, Chan K S. Pure spin current generation in monolayer graphene by quantum pumping[J]. Journal of Physics: Condensed Matter, 2012, 24(7): 075302.
[20] Liu Junfeng, Chan K S. Spin-polarized quantum pumping in bilayer graphene[J]. Nanotechnology, 2011, 22: 395201.
[21] Zhang Huan, Ma Zhongshui, Liu Junfeng. Equilibrium spin current in graphene with Rashba spin-orbit coupling[J]. Scientific Reports, 2014, 4: 6464.
[22] Jiang Yongjin, Low T, Chang Kai, et al. Generation of pure Bulk valley current in graphene[J]. Physical Review Letters, 110(4): 046601.
[23] Grichuk E, Manykin E. Adiabatic quantum pumping in graphene with magnetic barriers[J]. The European Physical Journal B, 2013, 86: 210.
[24] Wang Jing, Chan K S, Lin Zijing. Quantum pumping of valley current in strain engineered graphene[J].Applied Physics Letters, 2014, 104: 013105.
[25] Wang Jing, Lin Zijing, Chan K S. Pure valley current generation in graphene with a Dirac gap by quantum pumping[J]. Applied Physics Express,2014, 7: 125102.
[26] Vogt P, de Padova P, Quaresima C, et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon[J]. Physical Review Letters, 2012, 108(15): 155501.
[27] Fleurence A, Friedlein R, Ozaki T, et al. Experimental evidence for epitaxial silicene on diboride thin films[J]. Physical Review Letters, 2012, 108(24): 245501.
[28] Xu Chengyong, Luo Guangfu, Liu Qihang, et al. Giant magnetoresistance in silicene nanoribbons[J]. Nanoscale, 2012, 4(10): 3111.
[29] Houssa M, Pourtois G, Afanasev V V, et al. Electronic properties of two-dimensional hexagonal germanium[J].Applied Physics Letters, 2010, 96: 082111.
[30] Xu Yong, Yan Binghai, Zhang Haijun, et al. Large-gap quantum spin Hall insulators in Tin films[J]. Physical Review Letters, 2013, 111(13): 136804.
[31] Kane C L, Mele E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 2005, 95(22): 226801.
[32] Ezawa M. Valley-polarized metals and quantum anomalous Hall effect in silicene[J]. Physical Review Letters, 2012, 109(5): 055502.
[33] Wang Qinghua, Kalantar-Zadeh K, Kis A, et al.Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2013, 7: 699-712.
[34] Bunch J S, Van der Zande A M, VerbridgeS S, et al. Electro-mechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493.
[35] Garcia-Sanchez D, Van der Zande A M, Paulo A S, et al. Imaging mechanical vibrations in suspended graphene sheets[J]. Nano Letters, 2008, 8(5): 1399-1403.
[36] Chen Changyao, Rosenblatt S, Bolotin K I, et al. Performance of monolayer graphene nanomechanical resonators with electrical readout[J]. Nature Nanotechnology, 2009, 4: 861-867.
[37] Eichler A, Moser J, Chaste J, et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene[J]. Nature Nanotechnology, 2011, 6: 339-342.
[38] Low T, Jiang Yongjin, Katsnelson M, et al. Electron pumping in graphene mechanical resonators[J]. Nature Nanotechnology, 2012, 12: 850.
[39] Brouwer P W. Scattering approach to parametric pumping[J]. Physical Review B, 1998, 58(16): R10135(R).
[40] Zhai Feng, Xu H Q. Symmetry of spin transport in two-terminal waveguides with a spin-orbital interaction and magnetic field modulations[J]. Physical Review Letters, 2005, 94(24): 246601.
[41] Liu Junfeng, Chan K S. Relation between symmetry breaking and the anomalous Josephson effect[J]. Physical Review B, 2010, 82(12): 125305.

相似文献/References:

[1]范平,郑壮豪,梁广兴,等.离子束溅射制备Bi2Te3热电薄膜[J].深圳大学学报理工版,2011,28(No.1(001-095)):84.
 FAN Ping,ZHENG Zhuang-hao,LIANG Guang-xing,et al.Preparation of Bi2Te3 thermoelectric thin films by ion beam sputtering[J].Journal of Shenzhen University Science and Engineering,2011,28(4):84.
[2]王斌,李健伟,卫亚东,等.石墨烯带正常-超导结的量子输运[J].深圳大学学报理工版,2014,31(2):111.[doi:10.3724/SP.J.1249.2014.02111]
 Wang Bin,Li Jianwei,Wei Yadong,et al.Quantum transport through normal-superconducting graphene nanoribbons[J].Journal of Shenzhen University Science and Engineering,2014,31(4):111.[doi:10.3724/SP.J.1249.2014.02111]
[3]赵华,李华艳,周晓凡.自旋轨道耦合对超冷排斥费米气体相变的影响[J].深圳大学学报理工版,2014,31(6):570.[doi:10.3724/SP.J.1249.2014.06570]
 Zhao Hua,Li Huayan,and Zhou Xiaofan.Effects of the spin-orbit coupling on the phase transition of ultra cold repulsive Fermi gases[J].Journal of Shenzhen University Science and Engineering,2014,31(4):570.[doi:10.3724/SP.J.1249.2014.06570]
[4]乔振华,任亚飞.石墨烯中量子反常霍尔效应研究进展[J].深圳大学学报理工版,2014,31(6):551.[doi:10.3724/SP.J.1249.2014.06551]
 Qiao Zhenhua and Ren Yafei.Recent progress on quantum anomalous Hall effect in graphene[J].Journal of Shenzhen University Science and Engineering,2014,31(4):551.[doi:10.3724/SP.J.1249.2014.06551]
[5]罗景庭,钟鑫,朱茂东,等.ZnO薄膜生长及声表面波性能研究[J].深圳大学学报理工版,2015,32(1):17.[doi:10.3724/SP.J.1249.2015.01017]
 Luo Jingting,Zhong Xin,Zhu Maodong,et al.Growth of ZnO thin film and its surface acoustic wave properties[J].Journal of Shenzhen University Science and Engineering,2015,32(4):17.[doi:10.3724/SP.J.1249.2015.01017]
[6]张云波,王丽敏,王利.两全同粒子在一维光晶格中的量子行走[J].深圳大学学报理工版,2015,32(1):1.[doi:10.3724/SP.J.1249.2015.01001]
 Zhang Yunbo,Wang Limin,and Wang Li.Quantum walks of two identical particles in one-dimensional lattices[J].Journal of Shenzhen University Science and Engineering,2015,32(4):1.[doi:10.3724/SP.J.1249.2015.01001]
[7]牛青,李岩,李卫东.马赫-曾德尔干涉仪中位相测量系统的误差分析[J].深圳大学学报理工版,2015,32(3):306.[doi:10.3724/SP.J.1249.2015.0327]
 Niu Qing,Li Yan,and Li Weidong.Systematic error analysis for phase measurement with the Mach-Zehnder interferometer[J].Journal of Shenzhen University Science and Engineering,2015,32(4):306.[doi:10.3724/SP.J.1249.2015.0327]
[8]张龙,万浪辉,许富明,等.黑磷纳米带电子结构的调控[J].深圳大学学报理工版,2015,32(4):343.[doi:10.3724/SP.J.1249.2015.04343]
 Zhang Long,Wan Langhui,Xu Fuming,et al.Modulation of electronic structure of phosphorene nanoribbon[J].Journal of Shenzhen University Science and Engineering,2015,32(4):343.[doi:10.3724/SP.J.1249.2015.04343]
[9]郭飞翔,周晓凡,赵华.梯状光晶格中自旋轨道耦合的排斥费米气体[J].深圳大学学报理工版,2015,32(5):449.[doi:10.3724/SP.J.1249.2015.05449]
 Guo Feixiang,Zhou Xiaofan,and Zhao Hua.Spin-orbit coupled Fermi atoms loaded in an optical ladder lattice[J].Journal of Shenzhen University Science and Engineering,2015,32(4):449.[doi:10.3724/SP.J.1249.2015.05449]
[10]张东平,朱茂东,杨凯,等.氧分压对磁控溅射VO2薄膜相变性能的影响[J].深圳大学学报理工版,2015,32(6):645.[doi:10.3724/SP.J.1249.2015.06645]
 Zhang Dongping,Zhu Maodong,Yang Kai,et al.Influence of oxygen partial pressure on phase transition characteristics of VO2 thin films prepared by magnetron sputtering[J].Journal of Shenzhen University Science and Engineering,2015,32(4):645.[doi:10.3724/SP.J.1249.2015.06645]

备注/Memo

备注/Memo:
Received:2016-05-18;Accepted:2016-05-24
Foundation:National Natural Science Foundation of China (11204187)
Corresponding author:Assistant Professor Liu Junfeng.E-mail: liujf@sustc.edu.cn
Citation:Hong Shengxi, Deng Wenji, Liu Junfeng.Quantum pumping in strain modulated graphene-like materials[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(4): 352-358.(in Chinese)
基金项目:国家自然科学基金资助项目(11204187)
作者简介:洪盛熙(1990—),男,华南理工大学硕士研究生.研究方向:介观系统的电子输运.E-mail:1228313900@qq.com
引文:洪盛熙,邓文基,刘军丰.类石墨烯材料中应力调制的量子泵浦效应[J]. 深圳大学学报理工版,2016,33(4):352-358.
更新日期/Last Update: 2016-06-23