[1]高继华,史文茂,张超,等.耦合复Ginzburg-Landau方程中的相-模螺旋结构相似性[J].深圳大学学报理工版,2016,33(3):272-280.[doi:10.3724/SP.J.1249.2016.03272]
 Gao Jihua,Shi Wenmao,Zhang Chao,et al.Similarity of spiral structures between phase and amplitude in coupled complex Ginzburg-Landau equation[J].Journal of Shenzhen University Science and Engineering,2016,33(3):272-280.[doi:10.3724/SP.J.1249.2016.03272]
点击复制

耦合复Ginzburg-Landau方程中的相-模螺旋结构相似性()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第33卷
期数:
2016年第3期
页码:
272-280
栏目:
电子与信息科学
出版日期:
2016-05-20

文章信息/Info

Title:
Similarity of spiral structures between phase and amplitude in coupled complex Ginzburg-Landau equation
文章编号:
201603008
作者:
高继华史文茂张超戈早川杨海涛
深圳大学材料学院,深圳市特种功能材料重点实验室,广东深圳518060
Author(s):
Gao Jihua Shi Wenmao Zhang Chao Ge Zaochuan and Yang Haitao
College of Materials Science and Engineering, Key Laboratory of Special Functional Materials of Shenzhen, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
微分动力系统时空系统斑图复Ginzburg-Landau方程单向耦合螺旋结构模螺旋波
Keywords:
differential dynamic system spatiotemporal system pattern complex Ginzburg-Landau equation coupled system spiral structures amplitude spiral
分类号:
O 415.5
DOI:
10.3724/SP.J.1249.2016.03272
文献标志码:
A
摘要:
以二维复Ginzburg-Landau方程为模型,研究单向耦合时空系统中的斑图动力学行为.以稳定的模螺旋波为驱动系统,讨论响应系统在不同耦合强度下的时空斑图动力学行为.通过同步函数与系统相-模频率分析发现,在弱耦合强度条件下,驱动系统的相与响应系统的模会在螺旋结构上出现相似性.分别用靶波与平面波作驱动系统,发现同样现象.研究结果证明,随着耦合强度的增大,单向耦合复Ginzburg-Landau方程系统的耦合行为遵循从非同步、相与模螺旋结构上的相似到完全同步的过程.该现象同时解释了模螺旋波的产生.
Abstract:
We study the dynamic behavior in a unidirectionally coupled system based on a model of the two-dimensional complex Ginzburg-Landau equation. We discuss the spatiotemporal patterns in the response system driven by a stable amplitude spiral wave with different coupling strengths. By analyzing the synchronization function and frequency characteristic in the amplitudes of the drive system and the response system, we observe the similarity of spiral structures between phase and amplitude under weak coupling conditions. The same phenomenon is also observed with the driving signals of target waves and plane waves, respectively. This proves that the process of synchronization in the unidirectional coupled system has three steps: from out of synchronization to similarity of spiral structures between phase and amplitude, and finally to complete synchronization. This phenomenon explains the occurrence of amplitude spirals.

参考文献/References:

[1] Amengual A, Garcia E H, Montange R, et al. Synchronization of spatiotemporal chaos: the regime of coupled spatiotemporal intermittency[J]. Physical Review Letters, 1997, 78(23): 4379-4382.
[2] Bragard J, Boccaletti S, Mendoza C, et al. Synchronization of spatially extended chaotic systems in the presence of asymmetric coupling[J]. Physical Review E, 2004, 70(3): 36219-36227.
[3] Bragard J, Boccaletti S, Mancini H. Asymmetric coupling effects in the synchronization of spatially extended chaotic systems[J]. Physical Review Letters, 2003, 91(6): 64103-64106.
[4] Bragard J, Arecchi F T, Boccaletti S. Characterization of synchronized spatiotemporal states in coupled nonidentical complex Ginzburg-Landau equations[J]. International Journal of Bifurcation and Chaos, 2000, 10(10): 2381-2389.
[5] Boccaletti S, Bragard J, Arecchi F T, et al. Synchronization in nonidentical extended systems[J]. Physical Review Letters, 1999, 83(3): 536-539.
[6] Junge L, Parlitz U. Phase synchronization of coupled Ginzburg-Landau equations[J]. Physical Review E, 2000, 62(1): 438-441.
[7] Yang L, Zhabotinsky A M, Epstein I R. Stable squares and other oscillatory turing patterns in a reaction-diffusion model[J]. Physical Review Letters, 2004, 92(19): 198303-198306.
[8] Yang L, Epstein I R. Oscillatory turing patterns in reaction-diffusion systems with two coupled layers[J]. Physical Review Letters, 2003, 90(17): 178303-178306.
[9] Yang L, Epstein I R. Symmetric, asymmetric, and antiphase turing patterns in a model system with two identical coupled layers[J]. Physical Review E, 2004, 69(2): 26211-26216.
[10] Winston D, Arora M, Maselko J, et al. Cross-membrane coupling of chemical spatiotemporal patterns[J]. Nature, 1991, 351: 132-135.
[11] Neubecker R,Utlich B G. Experimental synchronization of spatiotemporal disorder[J]. Physical Review Letters,2004, 92(15): 154101-154104.
[12] Hildebrand M, Cui J X, Mihaliuk E, et al. Synchronization of spatiotemporal patterns in locally coupled excitable media[J]. Physical Review E,2003,68(2):26205-26208.
[13] 袁国勇,杨世平,王光瑞,等.两个延迟耦合Fitz Hugh-Nagumo系统的动力学行为[J].物理学报, 2005,54(4):1510-1522.
Yuan Guoyong, Yang Shiping, Wang guangrui, et al. Dynamics of two FitzHugh-Nagumo systems with delayed coupling[J]. Acta Physica Science, 2005,54(4):1510-1522.(in Chinese)
[14] Yuan Guoyong,Zhang Guangcai,Wang Guangrui, et al. Synchronization and asynchronization in two coupled excitable systems[J]. Communications in Theoretical Physics,2005,43(3):459-465.
[15] Yuan Guoyong, Yang Shiping, Wang Guangrui, et al. Segmented spiral waves and anti-phase synchronization in a model system with two identical time-delayed coupled layers[J]. Communications in Theoretical Physics, 2008, 49(1): 174-180.
[16] Yang Hujiang, Yang Junzhong. Spiral waves in linearly coupled reaction-diffusion systems[J]. Physical Review E, 2007, 76(1): 16206-16213.
[17] Gao Jihua, Xie Lingling,Nie Haichun,et al. Novel type of amplitude spiral wave in a two-layer system[J]. Chaos, 2010,20(4):043132.
[18] 高继华,谢伟苗,高加振,等.复金兹堡朗道方程中的模螺旋波[J].物理学报,2012,61(13):120506.
Gao Jihua, Xie Weimiao, Gao Jiazhen, et al. Amplitude spiral wave in coupled complex Ginzburg-Laudau equation[J]. Acta Physica Science,2012,61(13):120506.(in Chinese)
[19] 高继华,王宇,张超,等.复Ginzburg-Landau方程中模螺旋波的稳定性研究[J].物理学报,2014,63(2):020503.
Gao Jihua, Wang Yu, Zhang Chao, et al. Stability for amplitude spiral wave in complex Ginzburg-Landau equation[J]. Acta Physica Science,2014, 63(2): 020503.(in Chinese)
[20] Schmidt L, Krischer K. Clustering as a prerequisite for chimera states in globally coupled systems[J]. Physical Review Letters, 2015, 114(3): 034101.
[21] Haugland S W, Schmidt L, Krischer K. Self-organized alternating chimera states in oscillatory media[J]. Scientific Reports, 2015, 10(5): 9883
[22] Ciszak M, Mayol C, Mirasso C R, et al. Anticiapted synchronization in coupled complex Ginzburg-Landau systems[J].Statistical Mechanics, 2015, 92(3): 032911.
[23] Mikhailov A S, Showalter K. Control of waves, patterns and turbulence in chemical systems[J]. Physics Reports, 2006, 425(2/3): 79-194.
[24] Goryachev A, Kapral R. Structure of complex-periodic and chaotic media with spiral waves[J]. Physical Review E, 1996, 54(5): 5469-5481.
[25] Kuramoto Y. Chemical oscillations, waves and turbulence[M]. New York: Springer,1984.
[26] Cross M, Hohenberg P. Pattern formation outside of equilibrium[J]. Reviews of Modern Physics, 1993, 65(3): 851-1112.
[27] Aranson I S, Kramer L. The world of complex Ginzburg-Landau equation[J]. Reviews of Modern Physics, 2002, 74(1): 99-143.
[28] Hendrey M, Nam K, Guzdar P, Ott E, Target waves in the complex Ginzburg-Landau equation[J]. Physical Review E, 2000, 62(6): 7627-7631.

相似文献/References:

[1]谷坤明,谢伟苗,王宇,等.利用混合巡游方法控制时空混沌[J].深圳大学学报理工版,2013,30(No.5(441-550)):475.[doi:10.3724/SP.J.1249.2013.05475]
 Gu Kunming,Xie Weimiao,Wang Yu,et al.Control of spatiotemporal chaos by a hybrid itinerant feedback method[J].Journal of Shenzhen University Science and Engineering,2013,30(3):475.[doi:10.3724/SP.J.1249.2013.05475]

备注/Memo

备注/Memo:
Received:2015-12-02;Accepted:2016-03-25
Foundation:Shenzhen Science and Technology Research Foundation(JCYJ 20140418181958489)
Corresponding author:Professor Gao Jihua. E-mail: jhgao@szu.edu.cn
Citation:Gao Jihua,Shi Wenmao,Zhang Chao,et al. Similarity of spiral structures between phase and amplitude in coupled complex Ginzburg-Landau equation[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(3): 272-280.(in Chinese)
基金项目:深圳市基础研究资助项目(JCYJ 20140418181958489)
作者简介:高继华(1972—),男,深圳大学教授.研究方向:非线性动力学.E-mail: jhgao@szu.edu.cn
引文:高继华,史文茂,张超,等.耦合复Ginzburg-Landau方程中的相-模螺旋结构相似性[J]. 深圳大学学报理工版,2016,33(3):272-280.
更新日期/Last Update: 2016-05-08