参考文献/References:
[1] Marchionni L, Geman D. Predicting cancer phenotypes with mechanism-driven multi-omics data integration[J]. Cancer Research, 2015, 75(15): 261-274.
[2] Swan A L, Stekel D J, Hodgman C, et al. A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data[J]. BMC Genomics, 2015, 16(s1): S2.
[3] Triguero I, Rio S, Lopez V, et al. ROSEFW-RF: The winner algorithm for the ECBDL’14 big data competition: an extremely imbalanced big data bioinformatics problem[J]. Knowledge-Based Systems, 2015, 87: 69-79.
[4] Yao F, Coquery J, Lê Cao K A. Independent principal component analysis for biologically meaningful dimension reduction of large biological data sets[J]. BMC Bioinformatics, 2012, 13(1): 24.
[5] Ambroise C, McLachlan G. Selection bias in gene extraction on the basis of microarray gene-expression data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(10):6562-6566.
[6] Christin C, Hoefsloot H C J, Smilde A K, et al. A critical assessment of feature selection methods for biomarker discovery in clinical proteomics[J]. Molecular & Cellular Proteomics, 2013, 12(1): 263-276.
[7] 薛丽萍,尹俊勋,纪震.基于粒子群优化-模糊聚类的说话人识别[J].深圳大学学报理工版,2008,25(2):178-183.
Xue Liping, Yin Junxun, Ji Zhen. Speaker recognition based on particle swarm optimization and fuzzy clustering analysis[J]. Journal of Shenzhen University Science and Engineering, 2008, 25(2): 178-183.(in Chinese)
[8] 曾磐,朱安民.基于支持向量机的NBA季后赛预测方法[J].深圳大学学报理工版,2016,33(1):62-71.
Zeng Pan, Zhu Anmin. A SVM-based model for NBA playoffs prediction[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(1): 62-71.(in Chinese)
[9] Weiss G M, Provost F. The effect of class distribution on classifier learning: an empirical study: University Technical Report ML-TR-44[R]. Piscataway, USA: Rutgers, 2001.
[10] Khoshgoftaar T M, Fazelpour A, Dittman D J, et al. Classification performance of three approaches for combining data sampling and gene selection on bioinformatics data[C]// IEEE 15th International Conference on Information Reuse and Integration. Redwood City, USA: IEEE, 2014: 315-321.
[11] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357.
[12] Han Hui, Wang Wenyuan, Mao Binghuan. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]// International Conference on Intelligent Computing. Berlin: Springer Berlin Heidelberg, 2005: 878-887.
[13] Barua S, Islam M M, Yao X, et al. MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2): 405-425.
[14] Saeys Y, Inza I, Larraaga P. A review of feature selection techniques in bioinformatics[J]. Bioinformatics, 2007, 23(19): 2507-2517.
[15] Lazar C, Taminau J, Meganck S, et al. A survey on filter techniques for feature selection in gene expression microarray analysis[J]. IEEE Transactions on Computational Biology and Bioinformatics, 2012, 9(4): 1106-1119.
[16] Ding C, Peng Hanchuan. Minimum redundancy feature selection from microarray gene expression data[J]. Journal of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
[17] Yu Lei, Liu Huan. Feature selection for high-dimensional data: a fast correlation-based filter solution[C]// Proceedings of the 20th International Conference on Machine Leaning. Washington D C, USA:[s. n.], 2003, 2: 856-863.
[18] Momma M, Bennett K P. A pattern search method for model selection of support vector regression[C]// Proceedings of the 2nd SIAM International Conference on Data Mining. Arlington, USA:[s. n.], 2002: 261-274.
[19] Escalante H J, Montes M, Sucar L E. Particle swarm model selection[J]. The Journal of Machine Learning Research, 2009, 10: 405-440.
[20] Rosales-Pérez A, Gonzalez J A, Coello C A C, et al. Multi-objective model type selection[J]. Neurocomputing, 2014, 146: 83-94.
[21] Ambroise C, McLachlan G J. Selection bias in gene extraction on the basis of microarray gene-expression data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(10): 6562-6566.
[22] Zhou Jiarui, Zhu Zexuan, Ji Zhen. A memetic algorithm based feature weighting for metabolomics data classification[J]. Acta Electronica Sinica, 2014, 23(4): 706-711.
[23] He Shan, Chen Huanhuan, Zhu Zexuan, et al. Robust twin boosting for feature selection from high-dimensional omics data with label noise[J]. Information Sciences, 2015, 291: 1-18.
[24] Yukinawa N, Oba S, Kato K, et al. A multi-class predictor based on a probabilistic model: application to gene expression profiling-based diagnosis of thyroid tumors[J]. BMC Genomics. 2006, 7(1):190.
[25] Yeoh E J, Ross M E, Shurtleff S A, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling[J]. Cancer Cell, 2002, 1(2): 133-143.
[26] Bhattacharjee A, Richards W G, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24):13790-13795.
[27] Ramaswamy S, Tamayo P, Rifkin R, et al. Multiclass cancer diagnosis using tumor gene expression signatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(26): 15149-15154.