[1]郝昕,孙慧斌,赵海歌,等.高纯锗多晶材料区熔速度优化的数值模拟[J].深圳大学学报理工版,2016,33(3):248-253.[doi:10.3724/SP.J.1249.2016.03248]
 Hao Xin,Sun Huibin,Zhao Haige,et al.Numerical simulation on optimization of zone melting speed of high-purity germanium polycrystalline materials[J].Journal of Shenzhen University Science and Engineering,2016,33(3):248-253.[doi:10.3724/SP.J.1249.2016.03248]
点击复制

高纯锗多晶材料区熔速度优化的数值模拟()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第33卷
期数:
2016年第3期
页码:
248-253
栏目:
材料科学
出版日期:
2016-05-20

文章信息/Info

Title:
Numerical simulation on optimization of zone melting speed of high-purity germanium polycrystalline materials
文章编号:
201603004
作者:
郝昕1孙慧斌1赵海歌1胡世鹏1罗奇1谭志新23白尔隽1
1)深圳大学物理与能源学院,广东深圳,518060
2)中国科学院高能物理研究所,北京100049
3)东莞中子科学中心,广东东莞 523803
Author(s):
Hao Xin1 Sun Huibin1 Zhao Haige1 Hu Shipeng1 Luo Qi1 Tan Zhixin23 and Bai Erjun1
1) College of Physics and Energy, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R.China
3) Dongguan Neutron Science Center, Dongguan 523803, Guangdong Province, P.R.China
关键词:
半导体高纯锗制备高纯锗探测器区熔提纯杂质浓度数值模拟参数优化
Keywords:
semiconductor high-purity germanium preparation high-purity germanium detector zone refining impurity concentration numerical simulation parameter optimization
分类号:
TN 304.1
DOI:
10.3724/SP.J.1249.2016.03248
文献标志码:
A
摘要:
为提高探测器级高纯锗多晶材料的制备效率,开展对锗材料多次区熔过程的参数优化的数值模拟. 利用分凝原理对高纯锗多晶材料制备的区熔过程进行数值模拟,针对杂质分凝系数小于1的情况,比较了不同区熔速度下,单次和多次区熔的提纯效果. 结果表明,虽然速度越慢单次区熔效果越好,但对多次区熔的累计效果要采用相对快速多次的方法,以实现相同提纯效果下总时间最短,即多次累计的区熔效率最高. 给出了区熔速度的优化方法,以指导实验提高区熔效率.
Abstract:
In order to improve the high-purity germanium (HPGe) preparation efficiency, numerical simulation on parameters optimization for multiple zone melting process of germanium materials is carried out. By using the principle of segregation, the zone melting process of polycrystalline materials is simulated numerically. For the segregation coefficient of less than 1, the refining effects of both single and multiple zone melting processes at different zone melting speeds are studied comparatively. Results show that the slower the zone speed, the better the refining effect of single zone melting. However, the cumulative refining effect of multiple zone melting should be investigated in a relatively fast and multi-pass way. It thus achieves the same effect with less total time, resulting in a higher cumulative efficiency. This paper provides a method to optimize the zone melting speed for guiding experiments and improving the refining efficiency.

参考文献/References:

[1] Ahmed Z, Akerib D S, Arrenberg S, et al. Dark matter search results from the CDMS II experiment[J]. Science, 2010, 327(5973): 1619-1621.
[2] Angloher G, Bauer M, Bavykina I, et al. Results from 730 kg days of the CRESST-II dark matter search[J]. European Physics Journal C, 2012, 72(4):1-22.
[3] Peiffer P, Motta D, Schoenert S, et al. Operation of bare HP-germanium detectors in liquid argon (LAr)[J]. Nuclear Physics B: Proceedings Supplements, 2005, 143:511.
[4] Wilkerson J F. The majorana demonstrator: a search for neutrinoless double-beta decay of germanium-76[J]. Journal of Physics: Conference Series, 2012, 375(4):042010.
[5] Yue Qian, Zhao W, Kang Kejun, et al. Limits on light WIMPs from the CDEX-1 experiment with a p-type point-contact germanium detector at the China Jingping Underground Laboratory[J]. Physical Review D: Rapid Communication, 2014, 90(9):091701(R).
[6] Eberth J, Simpson J. From Ge(li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors[J]. Progress in Particle and Nuclear Physics, 2008,60(2):283-337.
[7] Yang G, Guan Y T, Jian F Y, et al. Zone refinement of germanium crystals[J]. Journal of Physics: Conference Series, 2015, 606: 012014.
[8] Wang G, Amman M, Mei H, et al. Crystal growth and detector performance of large size high-purity Ge crystals[J]. Materials Science in Semiconductor Processing, 2015, 39:54-60.
[9] Wang G, Mei H, Mei D, et al. High purity germanium crystal growth at the University of South Dakota[J]. Journal of Physics: Conference Series, 2015, 606:012012.
[10] Haller E E. Germanium: from its discovery to SiGe devices[J]. Materials Science in Semiconductor Processing, 2006, 9:408-422.
[11] Thais Cheung, Noe Cheung, Amauri Garcia. Application of an artificial Intelligence technique to improve purification in the zone refining process[J]. Journal of Electronic Materials,2010,39(1):49-55.
[12] 白尔隽.高纯锗多晶材料的制备[J]. 核技术, 1998, 21(9):558-561.
Bai Erjun. Preparation of ultra-pure germanium polycrystalline material[J]. Nuclear Techniques, 1998, 21(9):558-561.(in Chinese)
[13] Taishi T, Murao Y, Ohno Y, et al. Segregation of boron in germanium crystal[J]. Journal of Crystal Growth, 2008, 311:59-61.
[14] Yang G, Govani J, Mei H, et al. Investigation of influential factors on the purification of zone-refined germanium ingot[J]. Crystal Research and Technology, 2014, 49(4):269-275.
[15] Helfand E. Solution of the zone refining equation[J]. Journal of Applied Physics, 1966, 37(6):2484.
[16] Rodway G H, Hunt J D. Optimizing zone refining[J]. Journal of Crystal Growth, 1989, 97(3/4):680-688.
[17] Ho C D, Yeh H M, Yeh T L. The optimal variation of zone lengths in multipass zone refining processes[J]. Separation and Purification Technology, 1999, 15(1):69-78.
[18] Chii-Dong Ho, Ho-Ming Yeh, Tzuoo-Lun Yeh. Optimal zone lengths in multi-pass zone-refining processes[J]. Separations Technology,1996, 6(4):227-233.
[19] Spim J A, Bernadou M J, Garcia A. Numerical modeling and optimization of zone refining[J]. Journal of Alloys and Compounds, 2000, 298(1/2):299-305.
[20] Wang S, Fang H S, Jin Z L, et al. Integrated analysis and design optimization of germanium purification process using zone-refining technique[J]. Journal of Crystal Growth, 2014, 408:42-48.
[21] Dost S, Liu Y C, Haas J, et al. Effect of applied electric current on impurity transport in zone refining[J]. Journal of Crystal Growth, 2007, 307(1):211-218.
[22] Dold P, Benz K W. Rotating magnetic fields: fluid flow and crystal growth applications[J]. Progress in Crystal Growth and Characterization of Materials, 1999, 38(1/2/3/4): 39-58.
[23] Haas J, Liu Y C, Dost S. Design of a zone refiner for optimization studies[J]. Scientia Iranica, 2007, 14(5):474.
[24] Othmer K. Encyclopedia of chemical technology[M]. 4th edition. New York:Wiley, 2002.

备注/Memo

备注/Memo:
Received:2016-02-29;Accepted:2016-04-12
Foundation:National Natural Science Foundation of China (11575118)
Corresponding author:Professor Sun Huibin.E-mail: hbsun@szu.edu.cn
Citation:Hao Xin,Sun Huibin, Zhao Haige,et al.Numerical simulation on optimization of zone melting speed of high-purity germanium polycrystalline materials[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(3): 248-253.(in Chinese)
基金项目:国家自然科学基金资助项目 (11575118)
作者简介:郝昕(1980—),女,深圳大学讲师、博士.研究方向:辐射探测器材料研制.E-mail:haox@szu.edu.cn
引文:郝昕,孙慧斌,赵海歌,等.高纯锗多晶材料区熔速度优化的数值模拟[J]. 深圳大学学报理工版,2016,33(3):248-253.
更新日期/Last Update: 2016-05-08